Application System/400™ $C41-8192-00

Programming:
Query Management/400
Programmer’s Guide

Version 2

G

Application Development

—— Take Note!

Before using this information and the product it supports, be sure to read the general information under
“Notices” on page xi.

First Edition (May 1991)

This edition applies to the licensed program IBM Operating System/400 (Program 5738-SS1), Version 2 Release 1
Modification 0, and to all subsequent releases and modifications until otherwise indicated in new editions. Make
sure that you are using the proper edition for the level of the product.

Order publications through your IBM representative or the IBM branch serving your locality. Publications are not
stocked at the address given below.

A form for readers’ comments is provided at the back of this publication. If the form has been removed, you may
address your comments to:

Attn Department 245

IBM Corporation

3605 Highway 52 N
Rochester, MN 55901-7899

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you or restricting your use of it.

© Copyright International Business Machines Corporation 1991. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

© Copyright IBM Corp. 1991

Notices Xi
Programming Interface xi
About ThisGuide Xiii
Who ShouldUse ThisGuide xiii
Whatthe SAA Solutionls Xiii
Chapter 1. Introduction 1-1
Query Management Overview 1-1
Query Management Enhancements 1-1
AS/400 and the SAA Environment 1-1
Collection Use by Query Management 1-2
Naming Conventions 1-3
Query Objects 1-3
SystemNaming 1-3
SAANamIng e 1-4
AS/400 Objects 1-5
Variable Names 1-6
OtherQuery Names 1-6
Security and Authorization 1-6
Query ManagementObjects 1-7
AS/400 Objects 1-7
SQL e 1-7
Chapter 2. WorkingwithCommands 2-1
Query ManagementCommands 2-1
ERASE e 21
Examples of the ERASE Command 2-2
EXIT 2-2
EXPORT . . . e 2-2
Examples of the EXPORT Command 2-4
GET . . e 2-4
Extended Parameter List, 2-5
Examples of the GET Command 2-5
IMPORT . . 2-5
Examples of the IMPORT Command 2-7
PRINT .. 2-7
Examples of the PRINTCommand 2-10
Printer FileUse 2-10
Print Object Formatting 2-11
Print Report Formatting, 2-11
RUN . e 2-11
Examples ofthe RUN Command 2-12
SAVE DATA AS . . . e 2-12
Examples of the SAVE DATAAS Command 2-14
SET e 2-14
Extended Parameter List 2-15
Examples of the SET Command 2-15
Quotation Marks in varname Values 2-15
Programming Considerations, 2-16
START . e 2-16
Extended Parameter List 2-16
ifi

iv

Examples of the START Command 2-19

Query Management Query Command Procedure 2-19
Example of the Query Management Command Procedure 2-20
CLCommands e 2-20
ANZQRY (Analyze Query) Command 2-20
CRTQMFORM (Create Query Management Form) Command 2-21
CRTQMQRY (Create Query Management Query) Command 2-21
DLTQMFORM (Delete Query Management Form) Command 2-21
DLTQMAQRY (Delete Query Management Query) Command 2-21
RTVQMFORM (Retrieve Query Management Form) Command 2-21
RTVQMQRY (Retrieve Query Management Query) Command 2-21
STRQMPRC (Start Query Management Procedure) Command 2-21
STRQMQRY (Start Query Management Query) Command 2-21
WRKQMFORM (Work with Query Management Forms) Command 2-22
WRKQMAQRY (Work with Query Management Queries) Command 2-22
Chapter 3. Working with Query Management Programs 3-1
Callable Interface e 3-1
Callable Interface Description 3-2
Interface Communications Area (DSQCOMM) 3-2
Return Variables 3-2
Global Variable Support 3-2
Creating Variables 3-3
Referring to Variables 3-3
Variable Names 3-3
Variable Values 3-3
Query Management-Defined Variables 3-4
Query Capability 3-6
Rules for Creating Queries 3-6
Variable Substitution 3-7
Variable Prompting 3-8
Comments e 3-8

Line Continuations 3-8
Report Form Definition 3-8
How Applications CanUse Forms 3-8
SavingaDefault Form 3-9
Formatting Terminology 3-9
Break Fields e 3-11
Summary of Values for Break Information 3-11
New Page for Break and New Page for Footing 3-11
Repeat ColumnHeading 3-11
Blank Lines before Heading or Footing 3-12
Blank Lines after Heading or Footing 3-12
Put Break Summary atbline 3-12
Break Heading Text LineFields 3-12
Line . . 3-12
AlGN 3-13
Break Heading Text 3-13
Break Footing Text LineFields 3-13
Line . . e 3-13
Align .. 3-13
Break Footing Text 3-13
Column Fields e 3-13
Summary of Values for Column Attributes 3-14
ColumnHeading 3-14
USage 3-15

AS/400 Query Management/400 Programmer’s Guide

Indent 3-17

Width . . e 3-17
Datatype 3-17
Edit 3-17
Seg . e 3-19
Run-TimeDefaults 3-19
Datatype 3-19
ColumnHeading e 3-19
Edit ... 3-20
Width . . . e 3-20
Final TextFields e 3-21
Summary of Values for Final Text Information 3-21
New PageforFinal Text 3-21
Put Final Summaryatline 3-21
Blank Lines before Text 3-21
Final TextLine Fields 3-21
Line . e 3-22
Algn e 3-22
Final Text e 3-22
optionsfields 3-22
Summary of Values for Options Attributes 3-22
Detail Line Spacing e 3-22
Outlining for Break Columns 3-23
Default Break Text 3-23
Column Wrapped Lines KeptonaPage 3-23
Column Heading Separators 3-23
Break Summary Separators 3-23
Final Summary Separators 3-23
PageFields 3-24
Blank Lines before Headingor Footing 3-24
Blank Lines after Heading or Footing 3-24
Page Heading Text LineFields 3-24
Line .. e 3-25
AlIgN 3-25
PageHeading Text 3-25
Page Footing Text LineFields 3-25
Line . .. e 3-25
AlIGN 3-26
Page Footing Text 3-26
Procedures e 3-26
Procedure Interactionand Rules 3-27
Procedure Objects as File Members 3-27
Delimiters inthe Procedure 3-28
Example e 3-28
ErrorHandling e 3-28
Error Categories e 3-28
Exported Objects e 3-29
IMPORT and EXPORT File Considerations 3-29
Display Format 3-31
Encoded Format 3-31
Importinga Form Object 3-31
Columns Table Details 3-32
Exportinga Form Object 3-32
Records that Make Up the Base Encoded Format 3-32
Header (H)Record, 3-33
Value (V) Records 3-36

Contents V

Table Description (T) Records 3-37

Table Row (R) Recordscco.. 3-40
End-of-Object (E) Record 3-42
Application Data (*yRecord 3-43
Using DBCS Data in Query Management 3-52
Input Fields 3-52
Queries 3-52
ImportingDBCS Data 3-52
PrintingDBCS Data 3-52
Query Management Objects 3-53
Query Management CLCommands 3-53
GenericCommands 3-53
Creating a Query Management Object 3-54
Chapter 4. Instance Processing 4-1
Creating a Query Managementinstance 4-1
Running a Query Management/400 Query 4-2
Global Variable Substitution 4-3
Creating Query ManagementReports 4-3
Importing a Query or Form Object 4-4
Exporting a Query or Form Object 4-4
Importing and Exporting a Query Management Procedure 4-4
Running a Query Management Procedure 4-5
Using the Save Data AsCommand 4-6
Using SET GLOBAL and GETGLOBALCommands 4-7
Chapter 5. Using Query Management in HLL Programs 5-1
ClLanguagelinterface 5-1
Example DSQCOMMC 5-1
COBOL Language Interface 5-4
DSQCIB Function Syntax 5-4
DSQCIB Extended Function Syntax 5-4
Example DSQCOMMB 5-5
RPG Language Interface 5-7
DSQCIR Function Syntax 5-7
DSQCIR Extended Function Syntax 5-8
Interface Communications Area (DSQCOM) 5-9
Example DSQCOMMR 5-10
Chapter 6. Subprogram Useand CPIHandling 6-1
Subprogram Use 6-1
Description of Subprograms 6-1
START Subprogram 6-1
SETC Subprogram 6-3
SETA Subprogram 6-5
SETN Subprogram 6-7
RUNQ Subprogram 6-9
RUNP Subprogram 6-11

EXIT Subprogram 6-13
Chapter 7. Query Management/400 Considerations 7-1
Override Considerations 7-1
Tablesand Views 7-1
Tables Referred to on the ERASE TABLE Command 7-1
Tables and Views Referred to on the SAVE DATA AS Command 7-1
IMPORT and EXPORT Source Files 7-2

vi AS/400 Query Management/400 Programmer’s Guide

Query Procedures L T2

Miscellaneous Tips and Techniques Lo 7-4
Printing a Query Management Object 7-4
Changing STRQMQRY Defaults for QRYDFNUse 7-4
Displaying Information about Using QRYDFN Objects 7-5
Defining Queries with Global Variables Using Query/400 7-5
Using RUNQRY toProcessData 7-5
Using Query/400 to Create a QMFORM for an Existing QMQRY 7-6
Displaying Data from a Single Oversized Record 7-6

Using Query Management or CL Commands in PDM Options 7-7
Creating a CL Program for Permanent Conversion of a QRYDFN Object . . 7-7
Querying for FieldValues 7-8
Passing Variable ValuestoaQuery 7-9
Defining a Column with No Column Heading 7-10
Using Query Management to Format an ISQL-Developed Query 7-10
Using Information from Query/400 QRYDFN Objects 7-17
Using the STRQMQRY Command Instead of the RUNQRY Command ... 7-18
Miscellaneous Considerations 7-20

Limits to Query Management Processing 7-22
The Query Management Command 7-22
SQL QUErY . . . 7-22
Externalized Query 7-22
Externalized Form 7-22
Instances 7-22
Global Variables e 7-23
Procedures 7-23

Chapter 8. Using Query/400 Definition Information 8-1

QRYDFN Conversion e 8-1
Applying Query Management to QRYDFN Objects 8-1
Using the STRQMQRY Command Instead of the RUNQRY Command 8-2
QRYDFN Conversion Considerations for Satisfactory Results 8-5
Report Differences 8-5

Analyzinga QRYDFN 8-13
Inspectingthe Output 8-14
Applying QRYDFN Option Guidelines 8-15
ConversionDetails 8-17
Creating Query Management Objects from QRYDFN Objects 8-23
Converting QRYDFN Objects 8-23
Adding SAAFunction 8-25

Miscellaneous Considerations 8-26

Appendix A. Message Descriptions A-1

Appendix B. Query Management Interface Example B-1

Producinga Report B-1

Sample Programs B-2
Sample RPG Program B-3
Sample COBOL Program i B-5

Queryand FormSource B-7
Query and Form Printed Output B-7

Control Language Interface B-10
Creatinga QMQRY Object B-10
Creating a QMFORM Object B-11
Sample CL Program B-12

Contents Vii

A\

AS/400 Query Management/400 Programmer’s Guide

Figures

© Copyright IBM Corp. 1991

3-1.
3-2.

3-4.
3-5.
3-6.
3-7.
3-8.
3-9.
3-10.
3-11.
3-12.
3-13.
3-14.
3-15.
3-16.
3-17.
3-18.
3-19.
3-20.
3-21.
3-22.
3-28.
3-24.
3-25.
3-26.
4-1.
4-2.
4-3.
4-4.
4-5.
4-6.
4-7.
5-1.
5-2.
5-3.
5-4.

6-2.
6-3.
6-4.
6-5.
6-6.
6-7.
7-1.
7-2.
7-3.
7-4.
7-5.

AS/400 and SAA Terminology,
BasicPartsofaReport L.
Basic Parts of a Report with One Level of Control Break
Default Values for Break Fields
Default Values for Column Fields
Usage Code Definitions
Useof EditCodes
Run-Time Defaults for Columns Datatype Field
Default Values for Final TextFields
Default Values for Options Fields
Default Values for Page Fields
Header Record Description
Header Record Fields
Value Record Description
ValueRecord Fields
Table Record Description
Table Record Fields
Row Record Description,
RowRecord Fields,
End-of-Object Record Description
End-of-Object Record Fields
Application Data Record Description P
Application Data Record Fields
Sample Externalized Form
Descriptive Names of Encoded Format Form Fields
Preferred Format for Encoded Break Information
Original Format for Encoded Break Information.
Creating a Query ManagementiInstance
Running a Query ManagementQuery
Creating a Query ManagementReport
Importing and Exporting Query Management Members
Running Query Management Procedures
Saving Data to a Query Management Table
Using GET GLOBAL and SET GLOBAL Commands
Example DSQCOMMC
Example DSQCOMMB
DSQCOM Programming Information
Example DSQCOMMR
Example START Subprogram
Example SETC Subprogram
Example SETA Subprogram
Example SETN Subprogram
Example RUNQ Subprogram
Example RUNP Subprogram
Example EXIT Subprogram
CL Source for Permanent Conversion Program
CL Source for Global Variable Prompting Program
CL Source for Global Variable Prompting Command
Sample Printed ISQL-Developed QMQRY Object
Final Level Summary Values as Cover Page and Heading Text
INSertions
Final Level Text Insertions with Summary Table

ix

7-7.
7-8.
8-1.
8-2.

8-4.
8-5.
8-6.
8-7.

8-9.
8-10.

8-11.

8-12.

8-13.

8-14.
8-15.
B-1.
B-2.
B-3.
B-4.
B-5.
B-6.
B-7.
B-8.
B-9.
B-10.
B-11.
B-12.
B-13.
B-14.
B-15.

Form Usages Applied to SQL Column Functions 7-14

Report with Multiple Break Levels - Query/400 7-15
RUNQRY and STRQMQRY Actions When Convertinga QRYDFN 84
Query/400 Output before Adjustment 8-6
Query Management Output before Adjustment 8-7
Query/400 Output after Adjustment 8-8
Query Management Output after Adjustment 8-9
Query/400 Output before Adjustment 8-10
Query Management Output before Adjustment 8-11
Query/400 Output after Adjustment 8-12
Query Management Output after Adjustment 8-13
Correllation between WRKQRY Displays and Query Management

Objects 8-18
Correllation between WRKQRY Displays and Query Management

Objects 8-19
Correllation between WRKQRY Displays and Query Management

Objects 8-20
Correllation between WRKQRY Displays and Query Management

Objects 8-21
ConversionDataFlow 8-24
Sample CL Command Sequence for QRYDFN Conversion 8-24
Overview of Using Query Management to Produce a Report B-1
Data Description Specifications for WKPAY File B-2
Query Source Select Statement B-2
Report Results for SAMP1 B-2
Sample RPG Program B-3
Sample COBOL Program B-5
Sample Query Source B-7
Sample Form Source B-7
Printed Output of Query Source B-7
Printed Output of FormSource B-8
Test Query SELECT Statement B-10
Test Form Statement B-11
CL Program Source File B-12
CL Command Source File B-12
CL Program ReportExample B-13

X AS/400 Query Management/400 Programmer’s Guide

| Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.

Any reference to an IBM licensed program or other IBM product in this publication
is not intended to state or imply that only IBM’s program or other product may be
used.

IBM may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these
patents. You can send license inquiries, in writing, to the IBM Director of Commer-
cial Relations, IBM Corporation, Purchase, NY 10577.

The following terms, denoted by an asterisk (*) in this publication, are trademarks of
the IBM Corporation in the United States and/or other countries:

Application System/400 AS/400

C/440 Cobol/400

IBM Operating System/400
08/400 RPG/400

SAA SQL/400

Systems Application Architecture 400
This publication could contain technical inaccuracies or typographical errors.
This manual may refer to products that are announced but are not yet available.

Information that has changed since Version 1 Release 3 Modification 0 is indicated
by a vertical bar (]) to the left of the change.

This manual contains small programs that are furnished by IBM as simple examples
to provide an illustration. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability,
or function of these programs. All programs contained herein are provided to you
”AS 1S”. THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE EXPRESSLY DISCLAIMED.

© Copyright IBM Corp. 1991

Programming Interface

This Query Management/400 Programmer’s Guide is intended to help the customer
use Query Management/400. It primarily contains general-use programming inter-
faces, which allow the customer to write programs that use the services of Query
Management/400.

xi

X AS/400 Query Management/400 Programmer’s Guide

About This Guide

This guide describes and provides examples for using the Query Management/400
functions provided by the Operating System/400 licensed program.

The term DATA spelled in capital letters is used throughout this book. DATA or
DATA set refers to the active information resulting from running a query.

This guide was produced in conjunction with the Programming: Query
Management/400 Reference, SC41-8193.

You may need to refer to other IBM manuals for more specific information about a
particular topic. The Publications Guide, GC41-9678, provides information on all the
manuals in the AS/400 library.

For a list of related publications, see the “Bibliography.”

Who Should Use This Guide

This guide is intended to be used by the following:

¢ Applications programmers familiar with the Systems Application Architecture
(SAA) environment, the Common Programming Interface (CPl), Query/400, and
using Query/400 definitions

e System operators who have had formal AS/400 system training and are familiar
with operating the AS/400 system and Query/400 functions

o Users who are performing problem analysis

¢ |IBM programming service personnel, who are responsible for resolving noncus-
tomer problems with systems programs and the Query Management/400 applica-
tion

Note: Before you use this guide, you should be knowledgeable in the following:

SAA environment

CPI

Query/400

Structured Query Language/400 (SQL/400) licensed program
AS/400 system operation and functions

What the SAA Solution Is

© Copyright IBM Corp. 1991

The SAA solution is based on a set of software interfaces, conventions, and proto-
cols that provide a framework for designing and developing applications. The SAA
solution:

¢ Defines a common programming interface that you can use to develop applica-
tions that can be integrated with each other, and transported to run in multiple
SAA environments

¢ Defines common communications support that you can use to connect applica-
tions, systems, networks, and devices

xiii

¢ Defines a common user access that you can use to achieve consistency in panel
layout and user interaction techniques

¢ Offers some applications and application development tools written by IBM.

Xiv As/400 Query Management/400 Programmer’s Guide

| Chapter 1. Introduction

This chapter introduces the Operating System/400* (OS/400*) query management
system (called Query Management/400) and describes some of its characteristics,
specifications, and requirements, and its relationship to the Systems Application
Architecture* (SAA*) environment and the Query/400 programs.

Query Management Overview

This manual covers the AS/400* implementation of SAA Query Common Program-
ming Interface (CPI) as defined in the SAA CPI Query Reference manual.

Note: A working knowledge of SAA Query CPI is recommended as a prerequisite to
working with this product. A knowledge of Query/400 and Structured Query Lan-
guage (SQL) would also be beneficial.

This manual describes the functions and user interface for the AS/400 SAA query
management CPl. The CPI functions are provided by query management. The CPI
allows a user to access information in a relational database and control how this
data appears when formatted into a report. The CPI provides services that fall into
two major categories: querying and report writing.

Application programs can use query management services through a program-to-
program call interface using Query/400 objects. The Query/400 objects are created
only through the CPI using files containing externalized query, procedure, and form
definitions. The externalized files can be built using an editor, built by an applica-
tion program, transferred from another system (from which they were exported), or
created through conversion of definition (QRYDFN) objects that were created
through the Query/400 product.

© Copyright IBM Corp. 1991

Query Management Enhancements

Query Management/400 uses functions common to both Query/400 and SAA Query
CPlL. Query management also has sections that are enhanced versions of SAA
Query CPIl. This section describes some of the query management enhancements to
the following SAA Query CPI elements:

* Query management concepts
* Naming conventions
® Security and authorization

AS/400 and the SAA Environment

Query management objects are created and maintained as AS/400 system objects.
Figure 1-1 on page 1-2 shows the relationships among the SAA application rela-
tional database terms, AS/400 system terms, and the AS/400 SAA environment
terms.

1-1

Figure

1-1. AS/400 and SAA Terminology

SAA Term

AS/400 System Term

AS/400 SAA Use

Collection — A collected group of
tables.

Library — A library groups related
objects, allowing the user to find
the objects by name.

Collection — A collection consists
of a library, a journal, a journal
receiver, a data dictionary, and an
SQL catalog. A collection groups
related objects, allowing the user
to find the objects by name.

Table — Logical structures made
up of columns and rows main-
tained by the database manager.

Physical file — A collected group
of records.

Table — A collection of columns
and rows.

Row — A sequence of values such
that the nth value is a value in the
nth column of the table.

Record — A collection of fields.

Row — The horizontal part of a
table containing a serial collection
of columns.

Column — A set of values of the
same type.

Field — One or more characters of
related information of one data

type.

Column — The vertical part of a
table of one data type.

View — An alternative way of
looking at the data in one or more
tables.

Logical file — A subset of fields
and records of one or more phys-
ical files.

View — A subset of columns and
rows of one or more tables.

Authorization ID — A short identi-
fier that designates a user.

User profile — A name that identi-
fies a user and designates a set of
privileges on the AS/400 system.

Authorization ID — A character
string of not more than 10 bytes
that identifies a user.

Collection Use by Query Management
Query management treats all objects as belonging to a collection. Query manage-
ment is not as strict in its use of objects within collections. The following list
describes query management collection conventions:

* Query management objects (queries, forms, procedures) are not part of a col-
lection. As shown in Figure 1-1, a collection on the AS/400 system is a library.
A query management object may be part of a library, but if the library is a col-
lection, there is no entry for the query management object within the collection
catalogs or journals.

¢ Tables manipulated by the query management commands (ERASE and SAVE)
are treated as SQL tables. Manipulation of a table using the ERASE query man-
agement command requires that the table be part of a collection. Manipulation
of a table using the SAVE query management command requires that the table
be part of a collection only when saving to a new table. The SQL/400 rules appli-
cable to the SQL table manipulation statements are in effect when manipulating
tables through query management commands. The following list shows the cor-
respondence between query management commands and SQL statements:

ERASE

SAVE (to new table)
SAVE REPLACE
SAVE APPEND

Drop Table

Insert

1-2 Asr400 Query Management/400 Programmer’s Guide

Delete and Insert

Create Table and Insert

Naming Conventions

Query Objects

Use the guidelines in the following sections when you create a table or view or
name an object that you want to save in the database.

You can specify query objects on commands using either SAA names or system
names. The naming convention to use is specified in the query management
command procedure on the START command or the Start Query Management Query
(STRQMQRY) CL command. Query management uses SAA (*SAA) naming as the
default. The naming convention specified for a query management instance is used
throughout the entire instance and applies only to that instance. You cannot change
it after you issue the START command for the query instance.

Note: A query management instance is a collection of system resources and a set
of query commands within an application program.

These naming conventions only apply to the query object specified on a command.
System naming conventions always apply on the file name specified on the IMPORT
and EXPORT commands.

System Naming
When a query instance uses system naming, the following rules apply for a query
management object name specified in a query command:

¢ Specify query objects using names enclosed in quotation marks. The name is a
character string with the following characteristics:

— One to eight characters long
— Begins and ends with quotation marks (“”)
— Contains any character except

A blank

An asterisk (¥)

- A question mark (?)

- Apostrophes (')

- Quotation marks (“”)

- The numbers hex 00 through 3F, or hex FF

The name may be qualified, but the qualifier and the name must be surrounded
by quotation marks separately from each other.

o Specify query objects using simple names. Simple names are character strings
up to 10 characters long and must begin with an alphabetic character (A through
Z, $, #, or @). Periods and blanks are not allowed in simple names.

¢ Qualify a query command file name by using a library name up to 10 characters
long as a qualifier. A slash (/) must separate the qualifying library name and the
file name. For example, MYLIB/FILE1 (file FILE1 in library MYLIB) is a qualified
name. The rules applying to AS/400 names in quotation marks and simple
names apply to the library name used as the qualifier.

® Give objects of the same type that are stored in the same library different
names. (You cannot have two files named TEST, for example). Queries and
forms are different AS/400 object types. Therefore, a query and form may have
the same name. Names for procedures, tables, and views must be different,
since they are all AS/400 files. A procedure, table, or view can have the same

Chapter 1. Introduction 1-3

name as a query object or form object, but cannot have the same name as
another procedure, table, or view.

¢ You can name queries, forms, and procedures using reserved words (such as
FORM, QUERY, COUNT, NULL, and so on). However, naming something with
one of these SQL keywords is not recommended.

* Query management follows AS/400 search conventions if a query, form, or pro-
cedure specified in a query command is not qualified. If you specify an unquali-
fied query management object name, query management searches the library
list (*LIBL) for the query object. If the query object is being created, query man-
agement places the object in the current library (*CURLIB).

e See the SQL/400* Reference manual for the search conventions to follow if an
unqualified table or view name is specified on a query management command.

For more information on system naming and AS/400 search conventions, see the CL
Reference manual.

SAA Naming

When the query management instance is using SAA names, the following rules
apply for a query management object name specified in a query management
command. These rules are similar to the AS/400 object naming conventions. In
most cases, they are an extension of the object naming conventions stated in the
SAA CPI Query Reference manual. The deviations from the SAA CPI/ Query Refer-
ence manual are noted.

* You can specify query objects using names enclosed in quotation marks. The
name is a character string with the following characteristics:

— One to eight characters long
— Begins and ends with quotation marks (“”)
— Contains any character except

- A blank

An asterisk (*)

- A question mark (?)

- Apostrophes ()

Quotation marks (“”)

- The numbers hex 00 through 3F, or hex FF

Note: An SAA name can be 12 characters long, including the quotation marks.
The AS/400 system only allows 10 characters, including the quotation
marks.

The name may be qualified, but the qualifier and the name must be surrounded
by quotation marks separately from each other.

¢ You can use simple names to specify query management objects. Simple names
are character strings up to 10 characters long and must begin with an alphabetic
character (A through Z, $, #, or @). Periods and blanks are not allowed in
simple names.

¢ You can qualify one name by using another name (usually a user or an authori-
zation identification) of up to 10 single-byte characters, with a period (.) sepa-
rating the qualifier and the name. For example, Q.QUERY1 (the query in the Q
collection) is a qualified name. Query management uses the SQL/400 conven-
tion of treating the authorization ID as a user profile. If SAA naming conventions
apply, query management attempts to find the object in the library with the same

1-4 AS/400 Query Management/400 Programmer’s Guide

name as the authorization ID. The rules applying to names enclosed in quotation
marks and simple names apply to the library name used as the qualifier.

* You must give different names to objects of the same type that are stored in the
same library. (You cannot have two files named TEST, for example.) Queries
and forms are different AS/400 object types. Therefore, a query and form may
have the same name. Names for procedures, tables, and views must be dif-
ferent, since they are all AS/400 files. A procedure, table, or view can have the
same name as a query object or form object , but not the same as another proce-
dure, table, or view.

* Query management searches the library with the same name as the current user
profile for the query object if an unqualified query object name is specified. If
the query object is being created, query management places the object in the
library with same name as the current user profile. These are the same con-
ventions followed by the AS/400 SQL/400 product.

AS/400 Objects

The Filename specified on the IMPORT and EXPORT Query commands follows the
AS/400 naming conventions for a source physical file.

¢ You can specify the file name using names enclosed in quotation marks. The
name is a character string with the following characteristics:

— One to eight characters long
— Begins and ends with quotation marks (“”)
— Contains any character except

- A blank

- An asterisk (*)

- A question mark (?)

- Apostrophes (')

- Quotation marks (“”)

- The numbers hex 00 through 3F, or hex FF

The name may be qualified, but the qualifier and the name must be surrounded
by quotation marks separately from each other.

* You can specify the file name using simple names. Simple names are character
strings up to 10 characters long and must begin with an alphabetic character (A
through Z, $, #, or @). Periods and blanks are not allowed in simple names.

* You can use a library name to qualify a Filename in a query command. The
library name can be up to 10 characters long, with a slash (/) separating the
qualifier and the name. For example, MYLIB/FILE1 (a file in library MYLIB) is a
qualified name.

¢ Query management searches the library list (*LIBL) for a source file named
filename if a filename specified in a query command is not qualified. If the file is
being created, query management places the file in the current library
(*CURLIB).

¢ Use the following rules for specifying a member of a physical file that is a mul-
tiple member source file.

— The member name used if no member name is specified defaults to *FIRST
on the IMPORT and EXPORT commands.

— Query management processes a specified member in a physical file if a
member name is given as part of the file name. The member name must
follow the file name and be delimited by parentheses with no intervening

Chapter 1. Introduction 1-5

Variable Names

blanks. For example, you can specify the member MEMBERY in the file FILE1
by entering a file name as follows:

FILE1(MEMBERL)

See the section on extended variables in the Query Management/400 Reference
manual for the rules that apply when you use variables in SQL queries across the
callable interface. AS/400-specific rules are:

® Variable names used in SQL must start with a single-byte character letter and be
preceded by an ampersand (&). The ampersand delimits the beginning of a vari-
able name and is not included as one of the 18 characters allowed for the name.
You cannot have more than one ampersand in a variable name, since each
ampersand delimits the beginning of a distinct variable name.

¢ User-defined variables may not start with the character string DSQ. An error is
generated if you try to set a variable that starts with DSQ.

* Variable names within query management are case sensitive. Therefore, the
variable i_owe_you, is not the same as the variable I_OWE_YOU.

The following are valid variable names:

In an SQL Query In the GET/SET Command
&I_owe_you I_owe_you

&MYVAR123 MYVAR123

&THIS_IS_A BIG_NAME THIS_IS_A_BIG_NAME

Other Query Names

The naming convention being used by the query instance also applies to the SQL
statements in any SQL query run during the instance. If system names are being
used in the query instance, system names apply to the SQL query. If SAA naming
conventions apply, then SQL naming conventions apply to the SQL query. See the
SQL/400* Reference manual for a description of the SQL and system naming con-
ventions followed by the SQL/400 product.

Security and Authorization

1-6

Query management uses the AS/400 security and authorization model instead of the
security and authorization model described in the SAA CPI Query Reference
manual. See the Security Concepts and Planning manual for information about
security concepts for the AS/400 system.

This section discusses general security authorization considerations for the fol-
lowing items:

¢ Query management objects
¢ AS/400 objects
e SQL

AS/400 Query Management/400 Programmer’s Guide

Query Management Objects
When you create query management objects through a query management
command, use one of the following methods to specify the type of public authority
for the query management object that you want to give to other users:

AS/400 Objects

SQL

* You can specify a default public authority for all objects created during a query
management instance by setting a value in the DSQOAUTH keyword in the query
command procedure or on the START command. You can specify the following

values:
*LIBCRTAUT

*CHANGE

*ALL

*EXCLUDE

*USE

*LIBCRTAUT authority allows the same authority for the object as
specified on the CRTAUT parameter of the library in which the
object is being created. If the CRTAUT parameter is changed,
the new value will not affect the authority of existing objects.

*CHANGE authority allows other users to perform all operations
on the object except those limited to the owner or controlled by

object existence authority and object management authority. A
user can change or use the query object in any way, except for

deleting or transferring it to a new owner.

*ALL authority allows other users to perform all operations on
the object except those limited to the owner or controlled by
authorization list management rights. A user can do anything
with the query object (including erasing it) except transfer itto a
new owner.

*EXCLUDE authority prevents other users from doing anything
with the query object. Unless given specific types of authority,
no user except its owner can use the query object.

*USE authority allows other users to run, export, or print the
query object, but prevents them from importing or saving to it.

authorization list name

An authorization list controls users’ ability to use a query object.
For more information, see the Security Concepts and Planning
manual.

¢ |f you do not specify an authority through the query command procedure, other
users have *EXCLUDE access to the query object.

Query management uses the same public authority for creating a nonquery object,
such as the source physical file on an EXPORT command, as it does when creating

query objects.

See the SQL/400* Reference manual for information on object authority as it applies
to the SQL statement within an SQL query.

Chapter 1. Introduction 1-7

1-8 As/400 Query Management/400 Programmer’s Guide

Chapter 2. Working with Commands

This chapter describes query management and control language (CL) commands
and provides some examples of how you can use them to organize and process
general reports.

Query Management Commands

Use the following query management commands when writing applications to
organize general reports from database files:

ERASE

EXIT

EXPORT

GET

IMPORT

PRINT

RUN

SAVE DATA AS
SET

START

ERASE

The ERASE command removes a form, procedure, query, or table object from a
database file specified by a user.

»»>—ERASE——FORM name L >
—PROC (CONFIRM=—EYES:|—|
—QUERY NO

—TABLE

name
The name variable specifies a form, procedure, query, or table object to be
removed from the database.

This name can be a qualified name of the form library/object or database.object.
Specify the naming convention you intend to use in your first query command
procedure.

A user can only erase those objects to which he has been granted *ALL
authority and must also have *CHANGE or *ALL authority to the library in which
the object resides.

CONFIRM=YES | NO
This option provides a check before performing the ERASE request. The confir-
mation request occurs only when an existing object in the database is about to
be erased.

If your job is running interactively, an inquiry message is sent to your display
station and the job is suspended until you respond to the message. The
message asks whether you want to erase the object. If your job is running as a

© Copyright IBM Corp. 1991 2-1

batch job, or DSQSMODE was set to Batch mode during START processing,
CONFIRM = YES results in an error.

CONFIRM = YES forces the system to display the confirmation message.
CONFIRM = NO suppresses a display of the confirmation message and erases
the object. The default for this option is CONFIRM =YES unless the option is
changed during START processing by setting the value of the query-defined var-
iable DSQCONFIRM in the query command procedure.

When you issue the ERASE command, the system returns the message:
Object exists. Do you want to replace it?

This message is displayed only if you specify the CONFIRM = YES option or if
you omit the CONFIRM option.

Examples of the ERASE Command

The following examples show how to use the ERASE command in query manage-
ment:

ERASE TABLE EMP

ERASE TABLE SMITH.EMP (CONFIRM=YES
ERASE TABLE SMITH/EMP (CONFIRM=YES
ERASE PROC SMITH/MONTHEND (CONFIRM=NO

You can issue an ERASE TABLE command only on database physical files that are in a
library that is a collection.

EXIT
The EXIT command stops your application’s instance with query management and
ends the associated instance of query management in your system. No parameters
are allowed with this command.

»>—EXIT >

An implied EXIT command is processed for all query instances when the job ends.
The EXIT command is not valid in a query procedure.
There are no authority considerations related to the EXIT command.
See “EXIT Subprogram” on page 6-13 for an example of a program that uses the
EXIT command.

EXPORT

Use the EXPORT command to create a file containing the contents of certain query
management objects. The following objects can be exported: form, procedure, or
query.

2-2 AS/400 Query Management/400 Programmer’s Guide

Note: The option to import a table is not supported on the AS/400 system. To
export a table to another AS/400 system, use the Save Object (SAVOBJ) and
Restore Object (RSTOBJ) CL commands.

\/

PROC
QUERY

> L(= >
I—CONFIRM=—[YES I—COMMENT=—'comn1ent for member"—I
N

»—EXPORT—EF OR name—T10—fi lename

name
The name variable specifies a form, procedure, or query object to be exported.

This name can be a qualified name of the form library/object or database.object.
Specify the naming convention you intend to use in your initial query command
procedure.

You can only export forms, procedures, and queries to which you have been
granted *ALL authority. You also must have *ALL authority to the library in
which the object resides.

If the form or query object specified is not found, and DSQSCNVT=YES is speci-
fied on the START command, query management searches for a Query/400 defi-
nition with that name. If a Query/400 definition is found, the information is used

to create a query or form that query management can use.

filename
The filename variable specifies the system file that is to receive the exported
object.

This name can be a qualified name of the form library/object or library/object
(member name). If the file name is unqualified and does not exist in the library
list, the file is placed in the user’s current library.

If you are exporting an object to a system other than an AS/400 system, it is
recommended that the name of the file be from 1 to 8 characters long.

To be consistent when working with more than one system, do not specify more
than one file name without qualifying it. This enables system defaults to take
effect.

CONFIRM =YES | NO
This option provides a check before performing the EXPORT request. The con-
firmation request occurs only when an existing object in the database is about
to be exported.

If your job is running interactively, an inquiry message is sent to your display
station and the job is suspended until you respond to the message. The
message asks whether you want to export the object. If your job is running as a
batch job, or DSQSMODE was set to Batch mode during START processing,
CONFIRM=YES results in an error.

CONFIRM = YES forces the system to display the confirmation message.
CONFIRM =NO suppresses a display of the confirmation message and erases
the object. The default for this option is CONFIRM =YES unless the option is

Chapter 2. Working with Commands ~ 2-3

changed during START processing by setting the value of the query-defined var-
iable DSQCONFIRM in the query command procedure.

When you issue the EXPORT command, the system returns the message:
Object exists. Do you want to replace it?

This message is displayed only if you specify the CONFIRM = YES option or if
you omit the CONFIRM option.

COMMENT = Comment for member
Use the comment option to specify the member text when exporting a form, pro-
cedure, or query. Comments are useful for preserving information about the
object. Because comments usually include embedded blanks, they must be
enclosed in apostrophes. Apostrophes within a comment must be specified by
two adjacent apostrophes.

Examples:
COMMENT ="SALES QUERY’
COMMENT ='"THIS QUERY DOESN"'T INCLUDE SALES’

Examples of the EXPORT Command

The following examples show how to use the EXPORT command in query manage-
ment:

EXPORT QUERY SAMP1 TO SAMP1EX
EXPORT PROC DB1.MYPROC TO DB1/MYPROCEX
EXPORT QUERY SMITH/SALARY TO SMITH/SALARY

EXPORT FORM DB1.MYFORM TO DB1/MYFORM

GET

Use the GET command to get the value of a query management variable and
provide it to a user program or procedure. When using the GET command from a
procedure, you must use the short version of the command syntax. When using the
GET command from a program, use the extended version of the command syntax. If
you use the short version of the command syntax from a program or procedure, the
command is not functional since query management does not have access to the
user’s program storage area to store the variable value.

»»>—GET—GLOBAL >

>—[(—uservarname varname _l —><

number—lengths—varnames—value lengths—values—type

GLOBAL
The GLOBAL option specifies the varname variable located in the query man-
agement product global variable pool to be returned to the requester. If the var-
iable is not found in the global pool, an error message is returned.

2-4 AS/400 Query Management/400 Programmer’s Guide

uservarname
The uservarname specifies the name of the user variable to contain the
varname value.

varname
The varname variable specifies the name of the variable located in the query
management variable pool. For rules that apply to variable names used across
the callable interface, see the section on extended variable support in the SAA
CPI Query Reference manual.

Extended Parameter List
Use the following parameters to further qualify the GET command:

number of varnames
Number of varnames requested for this call.

varname lengths
Length of each varname that is specified.

varname Name of the variable located in the query management variable pool.

user value lengths
Length of the program storage area that is to contain the varname value.

user value
Name of the program storage area that is to contain the varname value.

value type
Data type of the storage area that is to contain the varname value.

Examples of the GET Command

The following examples show the GET command as used in a procedure or on the
query command string in a program:

GET GLOBAL (sqlret=DSQSQLEC myvar=VARNAME

GET GLOBAL (prtname = DSQAPRNM

For more information on the extended parameter list, see “Callable Interface” on
page 3-1.

IMPORT

Use the IMPORT command to copy a file containing an exported object into a form,
procedure, or query object. The IMPORT command does not affect the external file.

Note: The option to import a table is not supported on the AS/400 system. To
import a table from another AS/400 system, you can use the SAVOBJ and

RSTOBJ CL commands.
»»—TJMPORT FOR name—FROM—fi lename >
EPROC
QUERY

> L(| >
|—C0NFIRM=—|:YES;-I—J I-—COMMENT=~—--'comment for member'-J
NO

Chapter 2. Working with Commands 2-5

name
The name variable specifies the form, procedure, or query object to be
imported.

This name can be a qualified name of the form library/object or database.object.
Specify the naming convention you intend to use in your initial query command
procedure.

filename
The filename variable specifies the system file that query management is to
read (the source file for the imported object). This name can be a qualified
name of the form library/object or library/object(membername). To be con-
sistent when working with more than one system, do not specify more than one
filename without qualifiers or extensions.

For information on the description of the exported file, see “Exported Objects”
on page 3-29.

CONFIRM =YES | NO
This option provides a check before performing the IMPORT request. The con-
firmation request occurs only when an existing object in the database is about
to be imported.

If your job is running interactively, an inquiry message is sent to your display
station, and the job is suspended until you respond to the message. The
message asks whether you want to import the object. If your job is running in
batch mode, or DSQSMODE was set to Batch during START processing,
CONFIRM =YES resuits in an error.

CONFIRM = YES forces the system to display the confirmation message.
CONFIRM = NO suppresses a display of the confirmation message and imports
the object. The default for this option is CONFIRM = YES unless the option is
changed during START processing by setting the value of the query-defined var-
iable DSQCONFIRM in the query command procedure.

When you issue the IMPORT command, the system returns the message:
Object exists. Do you want to replace it?

This message is displayed only if you specify the CONFIRM = YES option or if
you omit the CONFIRM option.

COMMENT = Comment for object
Use the comment option to specify a text description for a form, procedure, or
query object. Comments are useful for preserving information about the object.
Because comments usually include embedded blanks, they must be enclosed in
apostrophes. Apostrophes within a comment must be specified by two adjacent
apostrophes.

Examples:
COMMENT ="My Form’
COMMENT ='This form doesn’’t include breaks’

In Query Management/400 a comment may be a maximum of 50 characters.
The IMPORT command creates a query management object from a source member
into the database. For SQL queries and procedures, each record in the file

becomes a separate line in the object. All files exported using the query manage-
ment EXPORT command can be imported.

The AS/400 system does not support variable length records. Therefore, if you are
importing an object with variable length records, the externalized object is con-

2-6 AS/400 Query Management/400 Programmer’s Guide

verted to fixed length during the transfer to the AS/400 system. Forms must have a
fixed-length record of 150 bytes.

When importing files containing SQL queries and procedures, query management
accepts records having a logical record length greater than 79 bytes, but text
exceeding position 79 is truncated. If query management finds a logical record
length greater than 79 bytes, it displays a warning message.

If the imported file has a fixed record format (and logical record length greater than
79 bytes), query management accepts only data in positions 1 to 79 and ignores all
others.

When importing files with a logical record length less than 79 bytes, query manage-
ment pads the record with blanks up to and including position 79. If the line con-
tains an open string enclosed in quotation marks, this padding is included within the
string and may cause unexpected results.

When importing query and procedure objects, query management does not perform
any validation or checking on the contents of the files. Therefore, it is possible to
create query and procedure objects containing characters that cannot be displayed.
This could happen, for example, if a program’s object file were imported as a query.
Also, it is possible to import SQL statements from a query into the procedure object
and vice versa.

Query management validates form objects. If some part of the file fails a validation
test, the object is brought into the database, but you are sent warning messages. It
is possible for the file to be in a state that passes the validation test, but produces
unpredictable results when used for formatting.

You can use the extended parameter list format for this command. For more infor-
mation on this format, see “GET” on page 2-4.

Examples of the IMPORT Command

The following examples show how to use the IMPORT command in query manage-
ment:

IMPORT FORM REPORT1 FROM REPTLEX
IMPORT QUERY SALARYWK FROM JENSON

IMPORT QUERY JONES/SALARYWK FROM JENSON/PAYROLL

PRINT

Use the PRINT command to print the contents of a query management object or to
print a report.

The PRINT command uses standard system functions for printing. Query manage-
ment does not externalize the printer attributes to your application, nor does it alter
these attributes’ values. Instead, it uses the printer definitions currently in effect.

An object’s printed appearance is very much like its displayed appearance.

However, the following differences appear between the display and formats of a
report:

Chapter 2. Working with Commands 2-7

* The title line of the report object in the display format is replaced with a page
heading at the top of each page in the printed report (assuming that a page
heading has been defined).

* A page footing appears at the bottom of each page of the printed report, but only
once at the bottom of the displayed object.

Y
A

»>>—PRINT: FORM—r—name L _]
tPROC—" (—PRINTER=—printer—name
QUERY

\ 4
A

»>—PRINT—REPORT

L(——{ Options I—-l

Options:
|
I

v

I—wIDTH=—1ﬂax char per line—‘ I—LENGTH=-—-max number Zines—I

I—FORM=—form name—-l I—PRINTER=——printer nameJ

L _‘]J L __I_J
DATETIME=—T—YES PAGENO=—-YES
Lo NO

name
The name variable specifies the object to be printed. The name specified may
be a form, procedure, or query in the database.

This name can be a qualified name of the form library/object or database.object.
Specify the naming convention you intend to use in your initial query command
procedure.

You must have *ALL, *CHANGE, or *USE authority to the object you are printing,
and you must have *ALL, *CHANGE, or *USE authority to the library in which the
object resides.

WIDTH = maximum characters per print line
The value of WIDTH must be an integer between 22 and 378.

If the object is wider than the default printer width, the lines in the printout are
truncated on the right. To avoid truncation, set the printer file QPQXOBJPF to
FOLD="*YES. You can run a PRINT PROC command against a procedure file
that has a record length greater then 79 bytes.

It is important that you ensure the compatibility of WIDTH with the printer you
are using. For example, if your current printer settings identify a 10-pitch device
(10 characters per inch) mounted with 8.5-inch-wide paper, then a WIDTH value
of 132 results in truncated output. Because query management does not know
the width of the physical printer, no message is shown when truncation occurs.

If you do not specify this option, query management uses the page width from
the printer file associated with the query session. See “Printer File Use” on
page 2-10 for more information on query management printer file use.

LENGTH = maximum number of lines per page
The value of LENGTH must be an integer ranging from 1 through 999.

When an object is to be printed and the value for LENGTH is inadequate (if the

2-8 As/400 Query Management/400 Programmer’s Guide

value for LENGTH is less than the total number of lines needed for column
headings, page headings and footings, plus the line needed to print the page
number, date, and time), an error message is generated and the object is not
printed.

For LENGTH values within the range allowed, query management performs a
page eject whenever the number of lines of object data printed on a page is
equal to LENGTH.

If you do not specify this option, query management uses the page length from
the printer file associated with the query session. See “Printer File Use” on
page 2-10 for more information on query management printer file use.

FORM =form name
The form name specifies the form you want to use to format your data.

This name can be a qualified name of the form library/object or database.object.
Specify the naming convention you intend to use in your initial query command
procedure.

PRINTER = printer name
The printer name specifies the printer that produces the output.

If you do not specify this option, the output is directed to the device specified in
the printer file associated with the query session unless the default for the
global variable DSQAPRNM is changed on the START command. See “Printer
File Use” on page 2-10 for more information on query management printer file
use.

DATETIME = YES | NO
This option controls the generation and display of the system date and time on
the bottom of each page. When you specify DATETIME=YES, the date and time
are placed on the last line of each page. When you specify DATETIME=NO, the
system date and time do not print. The default for this option is YES.

PAGENO =YES | NO
This option controls the printing of page numbers on the last line of each page.
The default for this option is YES.

You can use the extended parameter list format for this command. For more infor-
mation on this format, see “GET” on page 2-4.

Chapter 2. Working with Commands 2-9

Examples of the PRINT Command

Printer File Use

The following examples show how to use the PRINT command in query manage-
ment:

PRINT QUERY Q1 (PRINTER=PRT1
PRINT QUERY DB1.Q1 (PRINTER=PRT1
PRINT FORM FORM1

PRINT PROC LIBA/PROCA

PRINT PROC LIBA/PROCA(MBRA)
PRINT PROC PROCA

PRINT REPORT

PRINT REPORT (WIDTH=80 LENGTH=60 DATETIME=YES PAGENO=YES

Default printer files called QPQXOBJPF and QPQXPRTF are included as part of
query management and are in the QSYS library. These printer files are used when
a PRINT QUERY, PRINT PROC, or PRINT REPORT command is issued. The printer
file QPQXOBJPF has page length and width defaults of 66 lines and 132 characters,
respectively. The printer file QPQXPRTF has page length and width defaults of 66
lines and 80 characters, respectively. The printer device name specified by the
printer file is *JOB, which lets all printer output be directed to the printer set up for
the job. Unless overridden, the printer files QPQXOBJPF and QPQXPRTF are used
by query management for formatting the printed objects and report.

You can direct query management to use a different printer by specifying a value on
the PRINT command or by changing the default value DSQAPRNM on the START
command from *SAME to a printer name or *JOB.

You can direct query management to use a different printer file by using the Over-
ride Printer File (OVRPRTF) CL command.

You can use the Change Printer File (CHGPRTF) CL command to permanently
change the query management printer files QPQXOBJPF and QPQXPRTF. To use
SAA defaults again, issue another CHGPRTF CL command to change the attributes
back.

On every install, the printer files are created again in the QSYS library. All changes
to the printer files must be applied again. To save changes to a printer file, you can
create your own printer file in your library with the desired attributes and use the
OVRPRTF CL command to direct query management to this printer file. You can
also copy the printer files to your own library and make the changes to the copy in
that library. To use a printer file with the same name as the one in the SAA Query
library, your library must be in the library list before the SAA Query library.

2-10 AS/400 Query Management/400 Programmer’s Guide

Print Object Formatting

While processing the PRINT QUERY and PRINT PROC commands, query manage-
ment formats the printed output into 132 column lines. The column lines are broken
down into 123 bytes of text and 7 bytes for the line number, which is generated
during the PRINT command.

The width of 132 is wide enough to handle the printing of most files with ease and is
compatible with most AS/400 printers.

Directing the printer output to a printer with a line width less than 132 characters
results in possible loss of data unless the printer file has *YES specified for the Fold
Record parameter. The default for the Fold Record parameter in the QPQXOBJPF
printer file is *NO.

Print Report Formatting

While processing the PRINT REPORT command, query management formats the
printed report using the width specified on the PRINT command or the default from
the printer file. If the report is wider than the print WIDTH, it is split between pages.
In this case, multiple printer files are opened, and each segment of each report line
is directed to the appropriate opened printer file.

If the report is directed to a printer with a width less than the WIDTH specified on the
PRINT command or in the printer file, each print record is truncated. If the Fold
Record option in the printer file is changed from the default to *YES, each print
record is wrapped. For example, a report that formats to 200 columns when printed
with a command of PRINT REPORT (WIDTH =200 PRINTER = xyz, results in line
wrapping if the printer width is less than 200. The Record Wrap option on the printer
file has been overridden to *YES. If the Record Wrap option is not overridden, the
rightmost columns in the report are truncated.

RUN

The RUN command processes a procedure or a query. When you issue the RUN
command, you must identify the procedure or query you want to run. Therefore, the
procedure or query must exist prior to the start of RUN.

When used to run a query (SELECT only), the RUN command produces new data
that replaces the existing data from the previous RUN QUERY.

»-—RUN—[PROC—name >t
QUERY—name— (——[FORM=-—fornr~ncir5ej—l
DISPLAY= YES

NO

name
The name variable specifies the query or procedure to be run.

This name can be a qualified name of the form library/object or database.object.
Specify the naming convention you intend to use in your initial query command
procedure.

Chapter 2. Working with Commands 2-11

You can only run a query or procedure to which you have *USE authority to the
query and form. You must also have *CHANGE or *ALL authority to the library
in which the objects reside.

FORM =form name
Use the form name only for queries that contain a SELECT statement.

The FORM option specifies the form to be used in formatting the report that
automatically displays when running interactively. This option is ignored on the
RUN command if the job is running in batch mode.

If a RUN command with a form specified is followed by a PRINT command with
no form specified, the form specified on the RUN command is applied on the
PRINT command.

This name can be a qualified name of the form library/object or database.object.
Specify the naming convention you intend to use in your initial query command
procedure.

If the form specified by the FORM option cannot be found (when the form does
not exist), the RUN command is rejected with an error message. If the form
does exist but does not work with the data (as when different data types for the
columns are specified), query management responds with an error message.

If you omit the FORM option, a default form is used.

If the form or query specified is not found, and DSQSCNVT =YES is specified on
the START command, query management searches for a Query/400 definition
with that name. If a query definition is found, the information is used to create a
query or form that query management can use.

DISPLAY=YES | NC
Use the DISPLAY keyword to indicate whether to display the report. This
keyword defaults to Yes if you are processing interactively. lf you specified

Batch mode on the START command, this keyword is ignored.

You can use the extended parameter list format for this command. For more
information on this format, see “GET” on page 2-4.

Examples of the RUN Command

The following examples show how to use the RUN command in query management:
RUN QUERY QN1

RUN PROC WEEKREPT
RUN QUERY SMITH.Q6 (FORM=SMITH.SAL_REPT

RUN QUERY SMITH/Q6 (FORM=SMITH/SAL_REPT

SAVE DATA AS

Use the SAVE DATA AS command to save data in a table in the database. The
saved table object is named according to the name you specify with the command.

If data is saved and a table or view is being replaced, the data must be compatible
with the existing definition. Compatibie data has matching data types, lengths, and
null attributes. The number of columns in the data must match the target. If the two
objects are incompatible, query management rejects the SAVE DATA AS command
and the database remains unchanged.

2-12 AS/400 Query Management/400 Programmer’s Guide

The column names for a saved table that does not already exist are generated by
query management using the same algorithm used in generating the default column
headings in the form object. You cannot change the column names.

Query management allows for the replacement of data in any file that is compatible
with the data to be saved. The file does not have to be a table in a collection if the
table name specified exists. However, the library in which the table is to be created
must be a collection.

»>—SAVE—DATA—AS—tablename

Options:

A

L(——-] Options |J

\/

|—CONFIRM=—[YES I—COMMENT=-—‘c01m1ent for table 'j
N

>
| 2

|
LACTION= REPLACE:l——I
APPEND

tablename

The tablename variable specifies the table or view in which the data is stored in
the database.

If the table name specified does not exist in the database, a new table is
created. This name can be a qualified name of the form library/object or
database.object. Specify the naming convention you intend to use in your initial
query command procedure.

To save the data to a table, you must have proper SQL authority to change or
create a table. Refer to the SQL/400* Reference manual for table authorization
rules.

SQL/400 conventions allow a view to be updated only if it is associated with just
one table. Updating a view on multiple tables is not allowed, nor is updating a
view associated with a table that is an SQL catalog.

CONFIRM =YES | NO

This option provides a check before performing your SAVE request. The confir-
mation request occurs only when an existing object in the database is about to

‘be replaced.

If your job is running interactively, an inquiry message is sent to your display
station, and the job is suspended until you respond to the message. The
message asks whether you want to save the object. If your job is running in
batch mode, or DSQSMODE was set to Batch during START processing,
CONFIRM=YES results in an error.

CONFIRM =YES forces the system to display the confirmation message.
CONFIRM =NO suppresses a display of the confirmation message and saves the
object. The default for this option is CONFIRM =YES, unless the option is
changed during START processing by setting the value of the query-defined var-
iable DSQCONFIRM in the query command procedure.

When the SAVE DATA AS command is issued and there is already an object in
the library with the same name as the object to be saved, the system returns the
message:

Chapter 2. Working with Commands 2-13

Object exists. Do you want to replace it?

This message is displayed only if the CONFIRM = YES option is specified or if
you omit the CONFIRM option.

COMMENT = comment for table
Use the COMMENT option to supply a comment when saving data as a table.
Comments are useful for preserving descriptive information about the object.

| v Because comments usually consist of multiple words and embedded blanks, you
| must enclose them in apostrophes. You must enter apostrophes embedded
| within the commentary as two adjacent apostrophes.

The following examples illustrate proper quotation:
COMMENT='The primary EMPLOYEE table-see John (X3971)°'
COMMENT='Don"''t ERASE this data without telling Phill'

| Query management restricts object comments to a maximum of 50 characters,
| excluding the apostrophes.

ACTION = REPLACE | APPEND
Use the ACTION option to indicate whether an existing table or view is to be
replaced or if the data is to be added to the end. The default is
ACTION=REPLACE. The ACTION keyword is ignored if the table or view does
not exist.

You can use the extended parameter list format for this command. For more infor-
mation on this format, see “GET” on page 2-4.

| Examples of the SAVE DATA AS Command

[The following examples show how to use the SAVE DATA AS command in query
management:

SAVE DATA AS EMP12
SAVE DATA AS EMP12 (COMMENT='CLASSIC TWO TABLE JOIN')
SAVE DATA AS DB1.EMP12 (COMMENT='CLASSIC TWO TABLE JOIN')

SAVE DATA AS LIB1/EMP12

SET

Use the SET command to set the value of a query management variable from the
user program or procedure. Use the short version of the command syntax when
using the SET command from a procedure. Use the short version or the extended
version of the command syntax when using the SET command from a program. If
you use the short version of the command syntax from a program, the SET
command runs as it does from a procedure.

A maximum of 1000 variables may be set in a single query instance.

| »»—SET—GLOBAL >
i >—E(——varname userval 7 >
| number—Ilengths—varnames—value lengths—values—type

2-14 As/400 Query Management/400 Programmer’s Guide

GLOBAL
The GLOBAL option specifies the varname variable located in the query man-
agement global variable pool to be returned to the requester. If the variable is
not found in the global pool, a new variable is created. If the variable does
exist, its contents are replaced.

varname
The varname variable specifies the name of the variable located in the query
management variable pool. For rules that apply to variable names used across
the callable interface, see the section on extended variable support in the SAA
CPI Query Reference manual.

userval
The userval variable specifies the value to associate with the variable name
specified by varname. If it is a constant enclosed in single quotation marks, the
single quotation marks are removed.

Extended Parameter List
Use the following parameters to further qualify the SET command:

number of varnames
Number of varnames requested for this call.

varname lengths
Length of each varname that is specified.

varname Name of the variable located in the query management variable pool.

user value lengths
Length of the program storage area that is to contain the varname value.

user value
Name of the program storage area that is to contain the varname value.

value type
Data type of the storage area that is to contain the varname value.

Examples of the SET Command

The following are examples of how to use the SET command in a procedure or with
the short command syntax through a program:

SET GLOBAL (CHARVAR = 'abc'
SET GLOBAL (NUMBVAR = 199
SET GLOBAL (NAMEVAR = MYTABLE

SET GLOBAL (CHARVAR='abc' NUMBVAR=199 NAMEVAR=MYTABLE

Quotation Marks in varname Values
Use two adjacent single quotation marks to represent a quotation mark in a char-
acter string varname value if the variable is set with the short command syntax.
Use a single quotation mark in a character string varname value to represent a quo-
tation mark if the variable is set through the extended parameter list format.

Chapter 2. Working with Commands 2-15

Programming Considerations

The SET command is useful for selecting run-time records. You do not need to save
numerous QMQRY objects with different SELECT fields or WHERE conditions.

For example, you may want to run a query on a file that contains records for
employees whose names start with letters in the first part of the alphabet. You may
also want to run the same query with records for employees whose names start with
letters in the last part of the alphabet. Your query object, named EMPREPORT,
could contain the following SQL SELECT statement:

SELECT NAME,DEPT,EMPNO FROM MASTER
WHERE NAME = &STARTAL AND NAME < &ENDAL

You could then set up a procedure with the statements:

"SET GLOBAL (STARTAL='''A'''"
"SET GLOBAL (ENDAL='''Jg*''®
"RUN QUERY EMPREPORT"

"SET GLOBAL (STARTAL='''K'''"
"SET GLOBAL (ENDAL=''‘'Zz'''»
"RUN QUERY EMPREPORT"

You could also run the EMPREPORT query with the Start Query Management Query
(STRQMQRY) CL command from an interactive mode. You are prompted for vari-
ables STARTAL and ENDAL before the SELECT statement is performed.

START

The START command provides an interface to create an instance of query manage-
ment for a job. This command is only valid when issued through the callable inter-
face. The START command allows for values to be specified that indicate how the
query management instance is to be started.

If there is a conflict in job modes (interactive or batch) between a job running from
an AS/400 job queue, the DSQSMODE keyword, or the DSQSMODE variable in an
initial query command procedure, the job is always run in batch mode.

»>—START—number of keywords—keyword length—keywords—value lengths—»

»—values—value type >

Extended Parameter List

Use the following parameters to further qualify the START command:

number of keywords
Number of keywords that are passed with this call.

keyword length
Length of each specified keyword.

keywords Name of the START command keyword that is being set.

The following keywords are used on the START command in query management:

2-16 As/400 Query Management/400 Programmer’s Guide

DSQSMODE

DSQSCMD

- Ya -}
Uouwon

U

This keyword indicates the mode of query management operation when
subsequent commands are issued. Valid options are:

INTERACTIVE This option allows the display of reports and messages
during query management processing. Any reports gener-
ated as a resuit of a RUN QUERY command are shown on
your display. Any confirmation messages requiring a
response are shown on your display, and you can then reply
to the message.

BATCH No displays are shown during query management proc-
essing. Any messages requiring a response result in an
error. All other messages are sent to the job log.

The keyword value set for the DSQSMODE variable on the START
command overrides any keyword value set for the DSQSMODE variable
by the query command procedure.

This keyword is the name of a query command procedure that is used to
set up the query management instance. The SET command is the only
type of statement allowed in this procedure. If the DSQSNAME keyword
is not specified on the START command, *SAA conventions are used to
find the procedure. Otherwise, the naming conventions set by the
DSQSNAME keyword are used. If you do not specify the DSQSCMD
keyword, query management searches for a default query command pro-
cedure called DSQSCMDP.

This keyword names the query management procedure to run after
initialization is started.

DSQSNAME

This keyword specifies the naming convention to be used when proc-
essing query management commands and the SQL query. The keyword
value set for DSQSNAME on the START command overrides any
keyword value set for DSQSNAME in the query command procedure.

*SAA Any qualified query management object name specified in
commands or procedures is of the format database.object.

*SYS Any qualified query management object name specified in
commands or procedures is of the format library/object.

DSQSCNVT This keyword indicates whether query management
searches for a Query/400 definition object if a query manage-
ment object is not found or is not to be used.

The information contained in the query definition is used to create a tem-
porary query management object to be used in a command.

For example, the command RUN QUERY MYLIB/QRY1 (DSQSCNVT=YES tells
query management to search for a QMQRY object named QRY1. If that
object is not found, query management searches for a QRYDFN object
and uses the information contained in it to run a query.

YES Query management does search for a Query/400 definition
object if a query management object is not found.

NO Query management does not search for a Query/400 defi-
nition object if a query management object is not found.

Chapter 2. Working with Commands 2-17

ONLY Query management searches only for a Query/400 definition
object.

DSQOAUTH
This keyword indicates the authority given to any object created by query
management.

You can specify a default public authority for all objects created during a
query instance by setting a value in the DSQOAUTH keyword in the
query command procedure or on the START command. The values you
can specify are:

*LIBCRTAUT *LIBCRTAUT authority allows the same authority for the
object as specified on the CRTAUT parameter of the
library in which the object is being created. If the
CRTAUT parameter is changed, the new value will not
affect the authority of existing objects.

*CHANGE *CHANGE authority allows other users to perform all
operations on the object except those limited to the
owner or controlled by object existence authority and
object management authority. A user can change or use
the query object in any way, except for deleting it or
transferring it to a new owner.

*ALL *ALL authority allows other users to perform all oper-
ations on the object except those limited to the owner or
controlled by authorization list management rights. A
user can do anything with the query object (including
erasing it) except for transferring it to a new owner.

*EXCLUDE *EXCLUDE authority prevents other users from doing
anything with the query management object. Unless
given specific types of authority, no user except its
owner can use the query management object.

*USE *USE authority allows other users to run, export, or print
the query management object, but prevents them from
importing it or saving to it.

authorization list name
If you specify the name of an authorization list, its
authority is used to control the user’s ability to use a
query management object. For more information, see
the Security Concepts and Planning

If you do not specify an authority through the query command procedure,
other users have *EXCLUDE access to the query object.

value lengths Length of the program storage area that is to contain the
keyword value.

values Name of the program storage area that is to contain the
keyword value.

value type Data type of the storage area that is to contain the
keyword value.

2-18 As/400 Query Management/400 Programmer’s Guide

Examples of the START Command

See “START Subprogram” on page 6-1 for an example of a program that uses the
START command.

Query Management Query Command Procedure
Use the DSQSCMD keyword on the START command to specify the name of the
query command procedure that is run as part of query management initialization.
This procedure supplies default START parameters that are related to the environ-
ment in which query management is to run.

The query command procedure used on the DSQSCMD parameter is the only place
where users can set DSQ variables. The following DSQ variables can be set using
the query command procedure:

¢ DSQSMODE
DSQSRUN
DSQOAUTH
DSQSNAME
DSQCONFIRM
DSQAPRNM

Any other DSQ variables set in the query command procedure are ignored. Defaults
are applied to all DSQ variables that are not set in the user-supplied procedure.

The possible parameters for the DSQ variables that users can set using the query
command procedure are:

DSQSMODE = INTERACTIVE | BATCH
This parameter indicates the mode of query management operation
when subsequent commands are issued. Valid options are:

INTERACTIVE
Allows displays to be shown during query management processing. Any
reports generated as a result of a RUN QUERY command are shown on
your display. Any confirmation messages requiring a response are
shown on your display, and you can then reply to the messages.

BATCH
Does not show displays during query management processing. Any
messages requiring responses result in errors. All other messages are
sent to the job log.

DSQSRUN = query procedure name
The query procedure hame names the query management procedure to
run after initialization is started.

If DSQSRUN parameter is not specified on the START command and the
DSQSRUN variable is not set in the query command procedure, no
initialization procedure is run.

DSQOAUTH = *CHANGE, *EXCLUDE, *USE, *ALL, or authorization list name
If DSQOAUTH is not set by the query command procedure, it defaults to
*EXCLUDE.

DSQSNAME = *SYS | *SAA
This parameter specifies the naming convention to be used when proc-
essing query management commands.

Chapter 2. Working with Commands 2-19

*SYS
Use the format library/object to specify any qualified names in com-
mands or query management procedures.

*SAA
Use the format database.object to specify any qualified names in com-
mands or query management procedures.

If the DSQSNAME parameter is not specified on the START command
and the DSQSNAME variable is not set in the query command procedure,
the naming convention defaults to *SAA.

DSQCONFIRM = YES | NO
This keyword specifies the default to be taken when CONFIRM is not
specified on a command that allows for confirmation processing
(IMPORT, EXPORT, and SAVE DATA). If this DSQ variable is not speci-
fied in the query command procedure, the default is DSQCONFIRM =
YES.

DSQSCNVT = YES | NO | ONLY
This keyword indicates whether query and form information may be
derived from a Query/400 definition (QRYDFN) if query management
object information is not available. Specifying NO for this keyword
causes the command to end with an error if the query or form specified
on an EXPORT, PRINT, or RUN command is not found.

Specify Yes for this keyword to request query management to attempt to
use Query/400 information if the query or form specified on an EXPORT,
PRINT, or RUN command is not found. If this keyword is not specified on
the START command, it defaults to DSQSCNVT = NO.

Example of the Query Management Command Procedure
The following is an example of the contents of the default procedure included with
the product:

'SET GLOBAL (DSQSMODE=BATCH'
'SET GLOBAL (DSQOAUTH=*EXCLUDE'
'SET GLOBAL (DSQSNAME=*SAA'
'SET GLOBAL (DSQCONFIRM=YES'

CL Commands

The following control language (CL) commands are commonly used when working
with query management and writing applications to create query management
reports. For further information on using CL commands, see the CL Reference
manual.

ANZQRY (Analyze Query) Command

The Analyze Query (ANZQRY) command lets you analyze a Query/400 definition
(QRYDFN) object for query management conversion problems. Query management
returns diagnostic messages to your display station. These messages detail poten-
tial differences between how Query/400 and query management use query and form
information derived from the analyzed QRYDFN object. A completion message
shows the highest severity of the problems that are found.

2-20 AS/400 Query Management/400 Programmer’s Guide

CRTQMFORM (Create Query Management Form) Command
The Create Query Management Form (CRTQMFORM) command lets you create a
query management form from a specified source. The form defines how to format
DATA (from running a query) when printing or displaying a report. Form information
is encoded in source file member records.

CRTQMQRY (Create Query Management Query) Command

The Create Query Management Query (CRTQMQRY) command lets you create a
query from a specified source. A query is any single SQL statement that can
contain variable substitution values. The query can be spread over multiple records
in a source file member.

DLTQMFORM (Delete Query Management Form) Command

The Delete Query Management Form (DLTQMFORM) command lets you delete an
existing query management form from a library. Use a generic form name to delete
multiple forms from a library or list of libraries.

DLTQMAQRY (Delete Query Management Query) Command

The Delete Query Management Query (DLTQMQRY) command lets you delete an
existing query management query from a library. Use a generic query name to
delete multiple queries from a library or list of libraries.

RTVQMFORM (Retrieve Query Management Form) Command

The Retrieve Query Management Form (RTVQMFORM) command lets you retrieve
encoded form source records from a query management form (QMFORM) object.
The source records are placed into a source file member that can be edited.

You can also retrieve form source records from a QRYDFN object.

RTVQMAQRY (Retrieve Query Management Query) Command

The Retrieve Query Management Query (RTVQMQRY) command lets you retrieve
an SQL source statement from a query management query (QMQRY) object. The
source records are placed into a source file member that can be edited.

You can also retrieve query source records from a QRYDFN object.

STRQMPRC (Start Query Management Procedure) Command

The Start Query Management Procedure (STRQMPRC) command lets you run a
query management procedure that was saved as a member in a source file.

STRQMQRY (Start Query Management Query) Command

The Start Query Management Query (STRQMQRY) command lets you run an
existing query management query. The query runs the SQL statement saved in the
query management query. The DATA collected from running an SQL SELECT state-
ment can be displayed, printed, or stored in another database file.

QRYDFN object.

Iso derive the SQL statement or the information for formatting displayed
P a

Chapter 2. Working with Commands 2-21

WRKQMFORM (Work with Query Management Forms) Command
The Work with Query Management Forms (WRKQMFORM) command shows a list of

query management forms from a user-specified subset of query management form

names. Several query management form-related functions are available from this
list.

WRKQMQRY (Work with Query Management Queries) Command

The Work with Query Management Queries (WRKQMQRY) command shows a list of
query management queries from a user-specified subset of query management

query names. Several query management query-related functions are available
from this list.

2-22 AS/400 Query Management/400 Programmer’s Guide

Chapter 3. Working with Query Management Programs

This chapter describes the functions available in query management to form and run
programs that write query reports.

Callable Interface

© Copyright IBM Corp. 1991

The SAA callable interface (Cl) provides the ability for application programs to run
query management functions through calls to the SAA Query Interface. After com-
pletion of a query management function, return code and status information is avail-
able to the calling program. The Cl is supported by query management for C,
COBOL, and RPG languages:

The Cl consists of the following elements:
e SAA Cl macroinstructions

The SAA Cl macroinstructions are comprised of the include and macro files used
when application programs that call the SAA Cl modules are compiled. They
contain the declarations for the communications area structure and any con-
stants that are required to update and access the communications area struc-
ture. They also provide a standard interface from different programming
languages to SAA Cl modules. The interface provides common storage and
access of program variables between the programming language and query
management. One SAA Cl macro or include is provided for each language that
query management supports.

The following macro include packages are available for query management:

- G

Library QCC

File H

Member DSQCOMMC
~ COBOL

Library QLBL

File QILBINC

Member DSQCOMMB
~ RPG

Library QRPG

File QIRGINC

Member DSQCOMMR

Before compiling an application program that uses these includes or macros,
copy the member to the default include file used by the compiler. This allows
the include to be used by the application program without being qualified with
the library or file, which maintains a higher degree of portability.

You can code application programs to qualify the include with the library and file
name. This ensures the program is compiled with the newest version of the
include.

* Query management

Query management provides query and report writing services.
¢ SAA CI modules

Modules are provided by the CPI to allow access to query management func-
tions. These modules are:

DSQCICE The C language interface module for extended parameter lists
DSQCIC The C language interface module for nonextended parameter lists
DSQCIB The COBOL language interface module

DSQCIR The RPG language interface module

Callable Interface Description

The Cl is an interface that programming languages use to run query management
commands. All query management commands are supported through the Cl. See
the SAA CPI Query Reference manual for more details on the Cl.

Interface Communications Area (DSQCOMM)

The query management Cl communications area (DSQSCOMM) is required on all CI
calls. The program allocates storage for the Cl communications area using the
query management Cl. A unique communications macro is defined for each sup-
ported language.

Return Variables
For more information on return codes and variables, see the SAA CPI Query Refer-
ence manual for a description of the areas supported by query management.

Return Codes: Return codes are returned after each call to query management Cl.
Return code values are described by the data interface. For applications to be port-
able, values must be referred to by variable name rather than the equated value,
since this value may be different on other systems. Return code values for DSQRET
are:

DSQSUC Successful process of the request.
DSQWAR Normal completion with warnings.
DSQFAlI Command did not process correctly.

DSQSEV Severe error; query management session ended for the applicable
instance. Because the session ended, additional calls to query manage-
ment cannot be made using this instance ID.

Gilobal Variable Support

A variable is a named entity within query management that can be assigned a
value. Global variable support allows applications to define global variables within
query management.

You can use variables as substitution values in SQL queries and when using the Cl.
Once a variable is created, it is available to the query management session for the
life of the session. In addition to application-defined variables, query management
maintains a set of product variables. You can also use these variables in SQL
queries and the ClI.

3-2 AS/400 Query Management/400 Programmer’s Guide

Creating Variables

You must create application-defined variables using the SET GLOBAL command.
An attempt to run an SQL query that refers to a variable that is not set results in an
error.

Referring to Variables

Refer to variables by specifying the variable name in an SQL query or a user
program through the GET GLOBAL command. When a variable name is referred to
in an SQL query, you must prefix the variable name with an ampersand (&) so query
management can recognize it as a variable. For example:

SELECT * FROM &TNAME

The value &TNAME is considered a query management variable. There are no spe-
cific rules regarding where a variable name may be specified in an SQL query. As
an extreme case, you can do a SET GLOBAL command to set a variable to a char-
acter string containing an SQL statement and an SQL query containing nothing but
the variable reference can be run. For example, QUERY1 could contain the value
&sqlstmt. A program then issues the command string:

SET GLOBAL (sqlstmt = 'SELECT NAME, DEPT FROM MYLIB/PAYROLL'

Note: The program does only one pass of variable substitution. Therefore, using a
variable that contains another variable substitution string may result in an
SQL error when processed. If an SQL error occurs, the error generated
depends on the location of the unresolved variable name in the SQL state-
ment.

Variabie Names

For more information on the rules that apply when you use variables in SQL queries
across the callable interface, see the SAA CPI/ Query Reference manual. Rules spe-
cific to the AS/400 system can be found on page 1-6.

Variable Values
The following values are valid for the query management variables listed:
Character variables

e Character variable values consist of any value up to 55 characters long.

e A GET of a character variable into a smaller character field is allowed. The
character string is truncated on the right after 55 characters.

¢ A GET of a character variable into a larger character field is allowed. The char-
acter string is left-adjusted and blank-padded. The null character at the end of a
C string is not moved.

¢ A C null character is inserted at the end of the string if the GET was done
through the C language callable interface.
Integer variables

¢ Integer variable values must be 4 bytes long. An attempt to SET or GET an
integer with a length other then 4 bytes resulis in an error.

® |nteger variable values are assumed to be signed.
¢ The value must observe SQL/400 rules when used in an SQL query.

¢ An integer value is converted to a character string without leading or trailing
blanks prior to substitution into the SQL statement. Do not use an integer vari-

Chapter 3. Working with Query Management Programs 3-3

3-4

able if an implied result field width is needed or if you are using variable substi-
tution while defining the result field in the SQL statement.

Query Management-Defined Variables

Query management provides global variables for user programs. You can retrieve
these variables by using the GET GLOBAL command in your program. Use the
current set of query management variables to determine the current status of query
management environments and particular objects. Query management variables
cannot be altered by users, programs, or procedures. Set a subset of these vari-
ables by using the query command procedure specified on the START command.

The following variables are available in query management:

DSQAAUTH

DSQOAUTH

DSQSNAME

DSQAPRNM

DSQCATTN

Current connect authorization ID. This name contains the name
of the user profile under which the job is running.

Type Character
Length 10
Value —

Default object public authority to be given to objects created
through query commands.

Type Character
Length 10
Value One of the following:

o *LIBCRTAUT
e *EXCLUDE

o *ALL

s *USE

o *CHANGE

¢ An authorization list name

Naming convention be used. See “START” on page 2-16 for a
description of this variable.

Type Character

Length 4

Value One of the following:
¢ *SAA
* *SYS

Current defauit printer nickname. This name is set to the printer
device name specified in the user profile of the job at the time
the query management session was started.

Type Character

Length 10

Value —

Last command cancel indicator.
Type Character

Length 1

AS/400 Query Management/400 Programmer’s Guide

DSQCISQL

DSQAROWS

DSQAROWC

DSQSMODE

DSQCONFIRM

DSQSCNVT

DSQCIMNO

Value One of the following:

e 0 — Command completed
e 1 — Command canceled

Last SQL return code.
Type Integer
Length 4

Value See the appendix on SQLCODES in the SQL/400*
Programmer’s Guide.

Current number of rows fetched for data.
Type Integer

Length 4

Value 0 to maximum number of rows
Current data is completed.

Type Character

Length 1

Value One of the following:

e 0 — Data is not complete
¢ 1 — Data is complete

Current processing mode.

Type Character

Length 11
Value One of the following:

e Batch
e |nteractive

Confirm processing defaulit.

Type Character

Length 3

Value One of the following:
e YES
e NO

Conversion processing default.

Type Character

Length 4

Value One of the following:
e YES
¢ NO
e ONLY

The query management message ID. It is the same value that is
returned on the query management message line in the commu-
nications area.

Type Character

Chapter 3. Working with Query Management Programs 3-5

Length 8
Vaiue —

DSQCIQNO The message ID. It is the same value that is returned on the
completion message line in the communications area.

Type Character

Length 8
Value —

DSQCIMSG Contains the message text as it is displayed to the user interac-
tively.

Type Character

Length 55
Value —
DsQciQMG Contains the query message text as it is displayed to the user

interactively.
Type Character
Length 55

Value —_

Query Capability
Query management supports queries against relational data using SQL/400 con-
ventions. The basic statements, SELECT expressions, data definitions, and authori-
zation statements defined in the SQL/400* Reference manual are specifically
supported. You can manipulate queries by processing query management com-
mands such as IMPORT, EXPORT, PRINT, RUN, and ERASE. You can also manipu-
late them as 0S/400 objects through AS/400 CL commands.

Stored queries allow flexibility in two ways. First, you can change a query and store
it independently from your application program. Second, queries can contain vari-
ables. The values assigned to the variables can be set prior to or in conjunction
with your application. Both of these functions allow data query parameters to be
changed without writing or compiling your application again.

Rules for Creating Queries
The only way to create a query in query management is by doing an import of an
externalized query source file to create a query management query object. The
query management query object is stored as a QMQRY 0S/400 object. The
externalized query source file must contain a text string containing an SQL state-
ment. The SQL statement can optionally contain variables. A variable can appear
in any clause of the query and can represent anything that can be written into a
query, such as column names, search conditions, subselects, or specific values, as
well as multiple and partial clauses.

3-6 As/00 Query Management/400 Programmer’s Guide

The following is an example of a query:

-- This query lists the name, years of employment, and salary for
-- employees in a specified department. The department is a variable
-- and should be set before the query is run.

SELECT NAME, YEARS, SALARY -- names the columns used
FROM Q.STAFF -- names the table used
WHERE DEPT=&DEPTNUM -- variable selection condition

Query management strips the comments and performs variable substitution before
passing the query to the database manager for processing.

The following restrictions apply to queries handled by query management:

¢ The externalized query source file should contain only an SQL/400 statement.
An externalized prompted query would successfully import to query manage-
ment but would not run.

e Substitution variable values can be up to 55 bytes long.

e Comments are preceded by a double hyphen (--). Everything between the
double hyphen and the end of the line is considered a part of the comment.

¢ The total query cannot exceed 32KB minus 1 byte (after you remove comments
and blanks and make variable substitutions).

¢ An externalized query may optionally contain an H record and a comment V
record immediately following the H record. The comment may be used as the
text description when the object is imported.

Variable Substitution
The following rules apply to variable substitution in query management queries:

e Variable substitution is not done if the variable appears within a comment.

e Variable substitution is not done if the variable appears within a constant or a
delimited name.

¢ A variable within an SQL query is defined as a string of characters that begins
with an ampersand (&) and ends with any character that is not a valid variable
name character.

¢ Query management does not substitute extra blanks between variables. There-
fore, you can use variable substitution as a concatenation device. As an
example, the following query management SET commands are processed
through the callable interface or within a procedure:

SET GLOBAL (1ibrary='MYLIB'
SET GLOBAL (table='MYTABLE'
SET GLOBAL (dol=10
SET GLOBAL (cnts=50

Then running the following SQL query processes the ending SQL statement:

SELECT * FROM &library.&table
WHERE PRICE EQ &dol.&cnts

SELECT * FROM MYLIB.MYTABLE
WHERE PRICE EQ 10.50

Chapter 3. Working with Query Management Programs ~ 3-7

Variabie Prompting

If your job is running in interactive mode and the variable specified in a query is not
set in the global variable pool, query management sends a message to your display
station prompting you for the value to be used. Enter a valid value for the specified
variable, and then the query is processed.

If your job is running in batch mode and the variable specified in a query is not set
in the global variable pool, query management sends a warning message to your
display station. The variable is not substituted.

Comments
Comments in query management queries are handled in the following ways:

e Comments are stripped from the SQL query prior to variable substitution.
Comment delimiters within substituted variables are not stripped and may resuit
in SQL errors or unpredictable results.

¢ Comment delimiters within strings enclosed in quotation marks are not treated
as comments. These strings may either be delimited names, which are delim-
ited by quotation marks (“”), or constants, which are delimited by apostrophes
().

® You cannot use intervening blanks between the two hyphens (--) that make up
the comment delimiters.

Line Continuations
The following rules govern the use of line continuations in query management
queries:

* Some SQL clauses may span multiple lines of the SQL query. SQL does not
support a line continuation character. Therefore, for readability, start a new line
at a point in the SQL statement where a blank could be inserted. If a clause
spans mulitiple lines, the clause may be split as long as the last character in the
previous line is part of the clause and the first character in the next line is part of
the clause with no extra blanks. For example:

SELECT NAME, DEPT, SALARY, COMM

FROM LIBA/PAYROLL
WHERE NAME = 'SMITH'

e Constants and delimited names may span multiple lines.

Note: Mixed single-byte character set (SBCS) and double-byte character set
(DBCS) character strings may not successfully be split between multiple
lines. In this case, use SQL/400 concatenation.

Report Form Definition

This section describes query management reporting capabilities. You produce
reports by formatting the results of a query using the formatting information that is
specified in a form.

How Applications Can Use Forms

3-8

An application can create or alter a form by directly changing or creating the
exported form.

You can use an application to export an existing form from query management,
change it, import the form, and then format a report. You do not have to export the

AS/400 Query Management/400 Programmer’s Guide

form every time. An application can access and change an existing exported form,
and then import it into query management for reporting.

You can also import a form from a source that allows certain form fields to be filled
by default. It is possible to use only the header (H) record followed by the T and R
records for column information. The remaining form fields are filled in by query
management default values.

Saving a Default Form

Create a template for generating an external form object by making a source file
with a record length of 162 characters (CRTSRCPF CL command). Create a member
in this source file to contain minimal information. For example, the member DEFAULT
in library MYLIB1 and file TESTFORM contains the following statement:

[A DA S S Ue: SO SO S R T U Sy
HQM& 01 FOLEVWEROL 03 90/08/23 15:30

T 1110 001 000

R

E

This form contains only one column.

To create a default form in a library, use the Create Query Management Form
(CRTQMFORM) CL command to import the source file member you just created.
Use the Retrieve Query Management Form (RTVQMFORM) CL command to export
the internal form created as a result of the CRTQMFORM command. The member
created from the RTVQMFORM command contains a complete form for one column
of data with all default values (except those set at run time) filled in. For example,
you can use the following commands to create a source template form:

CRTQMFORM QMFORM(MYLIB/QMFORMT)
SRCFILE(MYLIB1/TESTFORM)
SRCMBR (DEFAULT)

RTVQMFORM QMFORM(MYLIB/QMFORMT)
SRCFILE(MYLIB1/TESTFORM)
SRCMBR(DFTCOMP)

The member named DFTCOMP created by these commands contains a complete
form with all other values defaulted for a one-column query. You can then edit
DFTCOMP to change field attributes and add more columns.

Formatting Terminology

To understand all of the options available in the form, Figure 3-1 on page 3-10 and
Figure 3-2 on page 3-10 show the effects of some of the form options on a formatted
report.

Chapter 3. Working with Query Management Programs 3-9

SALARY «<———=Column Heading

<+—1—Separator Line

Column Indent

Column Width

EASTERN DIVISION EMPLOYEE EARNINGS «————Page Heading
EMPLOYEE
DIVISION DEPARTMENT NAME JoB
EASTERN 38 ABRAHAMS CLERK $12,009.75
EASTERN 38 NAUGHTON CLERK $12,954.75 «<+—¢Edited Data
EASTERN 38 O'BRIEN - $18,006.00
EASTERN 38 QUIGLEY SALES $16,808.30
CONFIDENTIAL PAGE 1 <

Page Footing

Figure 3-1. Basic Parts of a Report

Edited Data is information from the database that displays according to the relevant

edit code or editing default.

TOTAL FOR EASTERN DIVISION <—|

EMPLOYEE
DIVISION DEPARTMENT NAME JoB SALARY
BEGINNING OF EASTERN DIVISION <« Break Heading
Text
EASTERN 38 ABRAHAMS CLERK $12,009.75
38 NAUGHTON CLERK $12,954.75
38 O0'BRIEN SALES $18,006.00 <——Detail Line
38 QUIGLEY SALES $16,808.30
— <+—T—Break Separator

$59,778.80 <—t——Break Summary

BEGINNING OF MIDWEST DIVISION
MIDWEST 42 KOONITZ SALES
42 SCOUTTEN CLERK
42 YAMAGUCHI CLERK
TOTAL FOR MIDWEST DIVISION

GRAND TOTAL — <+
EMPLOYEE EARNINGS <+—

Break Footing

Text
$18,001.75
$11,508.60
$10,505.90
$40,016.25
========= 4———Final Separator

$99,795.05 <

Final Summary

Final Text

Figure 3-2. Basic Parts of a Report with One Level of Control Break

The form object contains fields that describe the report.

Defaults are provided for information that is not available. Some defaults are pro-
vided when the form is imported. Others defaults, such as Data type and Column
heading, are provided at run time and depend on the resulting data of the processed

query.

Keywords encoded into the form should be in uppercase English. Text fields
(headings, footings, and final text) can be in upper- and lowercase letters.

The form object fields are commonly grouped by the following functional categories:

3-10 AS/400 Query Management/400 Programmer’s Guide

Break
Column
Final
Options
Page

e o o o o

The following sections describe the form fields and how to use them to specify how
results from running a query management query is formatted.

Break Fields

You can specify information for break levels one to six in the break fields. Change
or specify the exported form by selecting the proper form field numbers for each of
the break levels. Specify options for each break level in a similar manner. Each set
of options is independent from the others.

Summary of Values for Break Information

Figure 3-3 shows the defaults and possible values for the attributes in the Break
fields.

Figure 3-3. Default Values for Break Fields

Attribute Default Possible Values

New page for break NO YES, NO

New page for footing NO YES, NO

Repeat column heading NO YES, NO

Blank lines before heading 0 0 to 999

Blank lines before footing 0 0 to 999 or BOTTOM
Blank lines after heading 0 0 to 999

Blank lines after footing 1 0 to 999

Put break summary at line 1 1 to 999 or NONE
Alignment break heading text LEFT LEFT, CENTER, RIGHT
Alignment break footing text RIGHT LEFT, CENTER, RIGHT

New Page for Break and New Page for Footing

The New page for break and New page for footing fields indicate whether the subse-
quent part of the report begins on a new page. The default value is NO for both.
When you specify YES for the New page for break field, the member lines for the
break format on a new page. If you specify a break heading, it precedes the break
member lines on the new page. When you specify YES for the New page for footing
field, the break footing formats on the next page (if a footing exists).

Repeat Column Heading
The Repeat column heading field indicates whether you want the column headings
to repeat above the member lines for a particular break level. No is the default
value.

When paging through or printing a report, the column headings always appear at the

top of the display or page. Another set of headings appears at the start of the break
if YES is specified for Repeat column headings. This happens regardless of whether

Chapter 3. Working with Query Management Programs 3-11

there is any break heading text. However, if the break starts at the top of a printed
page, only the set of column headings preceding the break member line format.

Blank Lines before Heading or Footing

The Blank lines before heading and footing fields indicate the number of blank lines
that appear after any separator lines and before the break heading or break footing.
If no break footing is specified, the value for this field is the number of blank lines
before the break member lines. Query management allows any numeric value from
010 999. The default is 0 for both the heading and the footing.

The Blank lines before heading field may contain a number only.

For a break footing, you can also specify BOTTOM. Applicable only to a printed
report, BOTTOM causes the break footing to position at the bottom of the current
page on a printed report. BOTTOM causes insertion of blank lines to position the
text immediately before the page footing text specification on the page. This also
implies that a page eject occurs, since the next line must print on the next page.

Blank Lines after Heading or Footing

The Blank lines after heading and footing fields indicate the number of blank lines
after the break heading or break footing. If no break heading is specified, the Blank
lines after heading value is added to the Blank lines before heading value to deter-
mine the number of blank lines to use before the first or next set of detail lines. If no
break footing is specified (there is no text and Put break summary at line is NONE),
the value of this field is added to the Blank lines before footing value to determine
the number of blank lines after the break member lines. Query management allows
any numeric value ranging from 0 to 999. The default is 0 for the heading and 1 for
the footing.

Put Break Summary at Line

The Put break summary at line field indicates whether the break summary is to
format and, if it does, where to place it in relationship to the lines of break footing
text. Query management allows a numeric value from 1 to 999, or NONE. The
NONE value indicates that no break summary information is to display for the break.
The default is 1.

If the Put break summary at line value is m, there are at least m break footing lines
formatted in the report.

This placement is strictly vertical. For horizontal placement in the line, the break
summary always formats under the columns being summarized.

Break Heading Text Line Fields

There are 999 lines available for the break heading text.

Line
The Line field indicates the line positioning in the heading text lines.

3-12 As/400 Query Management/400 Programmer’s Guide

'?f::ag:ﬁgn field controls the positioning of the break heading text within the report
line. Acceptable values are:

RIGHT Right-justify the text.

LEFT Left-justify the text.

CENTER Center the text.

The default value is Left. The alignment is based on the entire width of the dis-
played or printed report through the end of the last column.

Break Heading Text
Query management allows 55 characters per line of break heading text. Only &n
(where n is a column number) is allowed to be used as a variable.

If the text line n is the highest numbered line with nonblank text, then n indicates
how many lines are to be formatted. This is true even though using n could result in
some of the formatted lines being completely blank.

Break Footing Text Line Fields

There are 999 lines available for the break heading text.

Line
The Line field indicates the line positioning of the footing text lines.

Align
The Align field controls the positioning of the page footing text within the report line.
Acceptable values are:

RIGHT Right-justify the text.
LEFT Left-justify the text.
CENTER Center the text.

The default value is Right. The alignment refers to the space between the first char-
acter position on the left and the end of the column before the first summary column
(or the end of the last column in the report if there is no presentation of summary
data for this break).

Break Footing Text
Only &n (where n is a column number) is allowed as a variable. Query manage-
ment allows you to use up to 55 characters per line.

If the text line n is the highest numbered line with nonblank text, then at least n
break footing lines are formatted. This is true even though using n could result in
some of the formatted lines being completely blank.

Column Fields

Query management supports a maximum of 255 columns of information. The data
retrieved by these columns has a limit of 32KB in the records retrieved. The fol-
lowing sections describe the fields available for use in defining the Column fields.

Chapter 3. Working with Query Management Programs 3-13

Summary of Values for Column Attributes

Column Heading

3-14 AS/400 Query Mana

Figure 3-4 on page 3-14 shows the defaults and possible values for the attributes in
the Column fields.

Figure 3-4. Default Values for Column Fields

Attribute Default Possible Values

Column heading Run time 1 - 62 characters with 8 underscores

Usage — AVG, MIN, MAX, SUM, COUNT, BREAK1 -
BREAK6, AVERAGE, MINIMUM,
MAXIMUM, FIRST, LAST, OMIT

Indent 2 0 to 999

Width Run time 110 32,767 SBCS

Datatype Run time CHAR, NUMERIC

Edit code — Run time E,D,,J,K,L,P

numeric

Edit code — Run time C,CW, CT

character

Seq Column number 110 999

The Column heading field represents the heading for a column in the report. A
heading can be up to 62 characters long.

You can embed underscore characters in the heading and use them to indicate the
break point for multiple line headings. Query management processes a maximum
of eight underscores in a heading. Leading and trailing underscores produce blank
segments before and after the column headings.

For example, a column heading of AMOUNT_LAST_INCREASE results in the following
3-line column heading:

AMOUNT
LAST
INCREASE

Consecutive underscores (in any position) introduce blank lines.

The underscore rule prevents you from seeing an underscore character in a column
heading. The only exception to this rule is when more than eight underscores
appear in a column heading, in which case the extra underscores print as part of the
last line of the heading.

Whenever you specify multiple-line headings, query management automatically
centers the smaller lines within the space of the longest line. Headings for char-
acter data are automatically left-justified, and headings for numeric data are auto-
matically right-justified. Data justification takes place within the width of the
column. The width specification must reflect the length of the longest segment of
this field.

If the number of characters in a heading line segment is greater than the number of

characters specified in the Width field, then query management truncates the
segment to the width specified for the column.

gement/400 Programmer’s Guide

Usage

If you do not specify a column heading, query management provides a run-time
default. You cannot cause a column to be shown without a heading by importing a
form with a blank heading uniess the database definition for the column indicates it
should not have a column heading.

The value in the Usage field determines use of the column in the detail line of the
formatted report result.

You can specify only one Usage value for each column in a form. If you want a
column to have more than one usage, you must select the column multiple times in
the query and define a usage code for each corresponding column entry in the form.

Figure 3-5 defines what each keyword describes.

Figure 3-5. Usage Code Definitions

Usage Code Definition

AVERAGE (or AVG) The average of the values in the column
COUNT The count of the values in the column
FIRST The first value in the column

LAST The last value in the column

MAXIMUM (or MAX) The maximum value in the column
MINIMUM (or MIN) The minimum value in the column

SUM The sum of the values in the column
OMIT The column to be excluded from the report
BREAK1— BREAK6 The value used to specify break levels

The Usage options include the following:

[blank]
Column to be included in the report.

OoOMIT
Column to be excluded from the report.

AVERAGE, COUNT, FIRST, LAST, MAXIMUM, MINIMUM, SUM
These keywords name aggregating uses that summarize the data in a column.
The result of the usage is given at a break or final summary. AVERAGE and
SUM work only on numeric data; COUNT, FIRST, LAST, MAXIMUM, and
MINIMUM work with both numeric and character data.

When you compare characters using MAXIMUM and MINIMUM, the shorter
string is padded with blanks and the strings are compared based on the internal
binary codes. For example, the character string ab is greater than the character
string aaa. There is no special processing on a character-by-character basis.

The following rules apply to the aggregating usages AVERAGE, COUNT, FIRST,
LAST, MAXIMUM, MINIMUM, and SUM:

1. If aggregation overflow occurs, the value in the field is represented by
greater-than symbols (>>>>) for the width of the column.

Chapter 3. Working with Query Management Programs 3-15

2. If the aggregation cannot be displayed due to the column width being too
small, the value in the field is represented by asterisks (*****) for the width of
the column.

3. If the data retrieved from the database for a particular column is bad, the

the column.

BREAK1
BREAK1 is the value used to specify a column as the first level, or highest,
control break. A control break is the break point where a column value
changes.

For example, if a set of rows of employees is ordered by department number
and job title, you can use a BREAK1 to total the salaries of all the employees in
the department, and a BREAK?2 to total the salaries by job titie within depart-
ment. Each time a row with a different job title is read, a BREAK2 creates and
displays the appropriate data and totals. Each time a row with a different
department number is read, a BREAK2 and BREAK1 are created, and both sets
of appropriate data display.

Before each break summary displays, a line is placed in the report consisting of
a row of hyphens (--) under any displayed column with an aggregation usages.
You can suppress this line by using an option described with the Options fields.
A blank line is normally placed after each set of break data.

Use the aggregation usages (AVERAGE, COUNT, FIRST, LAST, MAXIMUM,
MINIMUM, SUM) at control breaks. For example, summary data appears as
subtotals of all columns with a usage of SUM, or an average of the columns with
a usage of AVERAGE.

The data printed as part of the break is determined by the break definition. For
more information on break definitions, see “Break Fields” on page 3-11.

The break level numbers are not required to be consecutive. In this respect,
control break numbers are not absolute; you could specify control breaks 2, 4,
and 6, without specifying 1, 3, and 5. However, control break text assignments
continue to be absolute. Text for control break 2 is always associated with
control break number 2, not with the second control break.

You can assign muitiple columns to the same BREAKn value. When this occurs
and control breaks need to be determined, query management considers all
columns having the same control break level as a single concatenated column.
This is particularly useful when LAST_NAME and FIRST_NAME are stored as sepa-
rate columns. Likewise, it is needed when MONTH, DAY, and YEAR are each speci-
fied as separate columns.

When using a control break, the data in the column should be ordered. For the
data to be in order, the SELECT that produces the report must use ORDER BY.

There is no automatic reordering of columns due to break specifications, but
break text is usually displayed to the left of any summary columns. Therefore,
IBM* recommends using the Seq value to display the break columns to the left,
and the aggregated columns to the right, on the report.

BREAK2
BREAK2 is the use value that specifies a column as the second level control
break. A BREAK2 automatically generates whenever the columns on which it is
defined changes, or when there is a BREAK1 generated.

Note: A BREAK1 causes a BREAK?2, but a BREAK?2 does not cause a BREAK1.

3-16 Asr400 Query Management/400 Programmer’s Guide

Indent

Width

Datatype

Edit

BREAKS3 through BREAK®6
BREAKS through BREAKS6 are values that name control columns for breaks at
leveis 3 through 6.

The value in the Indent field represents the relative location of the column within a
row. lIts units are the number of blank characters between the column and:

¢ The right edge of the previous column
¢ The left edge of the display or paper

The Indent can be n, where 0 < = n < = 999. Query management defaults the
Indent field to 2. Query management defines this field as numerics only.

The value in the Width field specifies the number of spaces to reserve for displaying
the column heading and data. Column heading lines that are wider than specified in
the Width field are truncated. Query management allows only a numeric Width field
value. The maximum width is 32,767 spaces. If the length of the value to display
exceeds the width of the column, the value is replaced with a row of asterisks (****)
if it is numeric data, or truncated at the right if it is character data. If your report is
not displayed or printed as you specified, change the Width field value and display
the report again. If no Width value is specified, query management provides a run
time default.

The Datatype field specifies the kind of data that is represented by the column.

Possible values are:

¢ CHAR
¢ NUMERIC

If no Datatype value is specified, query management provides a run-time default. If
the data type is specified in the form, it must match the corresponding data type of
the field in the database for a report to be generated.

Use edit codes to format character and numeric data for display.

The following edit codes are valid for character data:

C The C edit code makes no change in the display of a value. If the value
cannot fit onto one line in the column, query management truncates the text
according to the width of the column.

Ccw The CW edit code makes no change in the display of a value, but if the value
cannot fit on one line in the column, query management wraps the text
according to the width of the column. Instead of truncating the data at the
end of the column, query management puts as much data as possible on
one line in the column and then continues the data on the next line in the
column.

Use the CW edit code on columns of mixed DBCS and single-byte character
data.

Chapter 3. Working with Query Management Programs ~ 3=17

CcT The CT edit code makes no change in the display of a value. If the value
cannot fit onto one line in the column, query management wraps the column
according to the text in the column. Instead of cutting off the data at the end
of the column, query management fits as much data as possible on a line,
interrupts the line when it finds a blank, and continues the data on the next
line. If a string of data is too long to fit into the column and does not contain
a blank, query management wraps the data by width until it finds a blank
and can therefore continue wrapping by text.

Use the CT edit code on columns of mixed DBCS and single-byte characters.
Query management interrupts the line when it finds a single-byte blank.

The following edit codes are valid for numeric data:

E The E edit code displays numbers in scientific notation. For example, the
number -1234.56789 displays as -1.234E +03. As many characters as can
display are placed in the report, up to a maximum of 23. One space is always
reserved for a leading sign, although it does not display for positive numbers.
There is always a sign and three digits after the E. The system can display up
to three digits after the E.

D,IJ,K,L,and P
The D, I, J, K, L, and P edit codes display numbers in decimal notation with dif-
ferent combinations of leading zeros, negative symbols, thousands separators,
currency symbols, and percent signs. Examples of these edit codes are shown
in Figure 3-6.

Each code can be followed by a number from 0 to 31 that tells how many places
to allow after the decimal point. If you do not specify a number, query manage-
ment assumes no places after the decimal point. Numbers that have more
decimal places than fit into the allowed space are rounded; numbers with fewer
decimal places are padded with zeros.

Figure 3-6 shows how the numeric edit codes format the number -1234567.885.

Edit Lead Negative Thousands Currency Percent Display of

Code Zeros Sign Separators Symbol Sign -1234567.885

E No Yes No No No -1.23456789E+06
D2 No Yes Yes Yes No -$1,234,567.89
I3 Yes Yes No No No -0001234567.885
J2 Yes No No No No 000001234567 .89
K3 No Yes Yes No No -1,234,567.885
L2 No Yes No No No -1234567.89
P2 No Yes Yes No Yes -1,234,567.89%

Figure 3-6. Use of Edit Codes

If you do not specify an Edit value, query management provides a run-time default.

3-18 AS/400 Query Management/400 Programmer’s Guide

Seq

Specify Seq to order the columns in the generated report. The following rules apply
to evaluating Seq values:

¢ Values default to n for the nth column in the form
* Values can be any number from 1 to 999.
e Numbers need not be consecutive.

* Columns with the same Seq value appear in the report in the same order that
they appear in the form.

Run-Time Defaults

Query management uses system-provided default values for the Datatype, Column
heading, Edit, and Width fields when columns of data extracted by running a query
need to be formatted for a report, and one of the following is true:

¢ No form is specified or *SYSDFT is specified to refer to the default form for the
extracted data.)

¢ The specified form does not contain the information needed to format the report
(the form was imported with warnings about blank values or missing column
table fields).

Datatype

Figure 3-7 shows datatype defaults that are assumed from internal numeric identi-
fiers returned with the data. For an explanation of the datatype numbers and
meanings, see the SQL/400* Reference.

Figure 3-7. Run-Time Defaults for Columns Datatype Field
Datatype Value Datatype Meaning (SQL)
Number
NUMERIC 496 Integer (binary)
500 Small integer (binary)
484 Decimal
480 Floating point
488 Numeric (zoned)
CHAR 452 Fixed character
448 Varying-length character
456 Long varying-length character

Column Heading

Establish Column heading default values for file data when defining a field to the
system. Field names are used as column headings uniess other text is specified
when you use interactive data definition utility (IDDU).

Define files that do not cause column headings to be defaulted. Column heading
default values for calculated data and for file fields without established defaults are
taken from the set of unique column names manufactured at run time for the
selected columns. These are the column names that are used to create a new file
for a SAVE DATA request.

To manufacture these names, query management processes the selected columns
in order, from first to last. The unique name for the nth selected column is created
in the following way:

Chapter 3. Working with Query Management Programs 3-19

1. If it does not match any previously created name, the column name from the file
(table) definition (or SEL for a calculated field) is used as the created name.

2. If the matched name is too long to add the next available number, that number is
added to COL to create the unique name.

3. If the matched name is not too long to add the next available number, that
number is added to the matched name (or SEL) to create the unique name.

Note: The first number added to a column name or COL to make the name unique
is 1, the next number added is 2, and so on.

The following example shows the unique names created for a particular SELECT
list.

SELECT 7*WEEKS, SALARY, SALARY, SALARY/7*WEEKS, MAXBENEFIT, MAXBENEFIT

l l I l I l

| l I I l l
SEL SALARY SALARY1 SEL2 MAXBENEFIT ~ COL3

If some of the columns have previously defined column heading defaults, the
column headings in a formatted report are not necessarily unique. This can be true
for the *SYSDFT form as well as for a form specified by name.

Edit

Editing default values are intended to be the same as those used by other data-
displaying products on the system, such as Query/400. Character data is
unchanged or truncated (this is what happens for SAA edit code C). Scientific nota-
tion is used for floating data (this is what happens for SAA edit code E). Editing
defaults usually have no corresponding SAA representation for other types of
numeric fields, and can include edit words, edit descriptions, and RPG edit codes.

File (table) data default values are established when a field (column) is defined to
the system. System-level values determine the editing for calculated data. These
values come from a iranslatable message and are used for building a default edit
description whenever one is needed.

Changeable system-level values can also affect the editing applied to numeric data.
For example, the QDECFMT system value determines the decimal point used in the
editing applied for RPG edit code J.

Width

Width default values are intended to provide room for everything that has to be
shown in the column. For a particular column, the default is the maximum of the
following:

¢ The length of the longest segment of the column heading

* The edited data width (after adjustment of the number of digits by 3 if SUM
Usage aggregation values have to be shown in the column)

¢ A length of 8 if COUNT Usage aggregation values have to be shown in the
column

3-20 AS/400 Query Management/400 Programmer’s Guide

Final Text Fields

The Final Text fields specify the characteristics of the final text that appear on a
report.

Summary of Values for Final Text Information
Figure 3-8 shows the defaults and possible values for the attributes on the Final

Text fields.
Figure 3-8. Default Values for Final Text Fields
Attribute Default Possible Values
New page NO YES, NO
Put final summary at line 1 1 to 999 or NONE
Blank lines before text 0 0 to 999 or BOTTOM
Alignment for final text RIGHT LEFT, CENTER, RIGHT

New Page for Final Text

The New page field indicates whether the subsequent part of the report (final text)
must begin on a separate page when printed. The default is No. When you specify
Yes for New page, the final text formats on a new page.

Put Final Summary at Line
The Put finai summary at iine fieid indicaies whetner the finai summary shouid
format, and if so, where to vertically position it in the report final text. Query man-
agement allows numeric values from 1 to 999 or the word NONE, where NONE indi-
cates there is no presentation of final summary data. The default value is 1.

A value of 1 to 999 indicates the relative line number within the final text at which
the summary data must format. This is strictly vertical placement. For horizontal
placement in the line, the final summary is always formatted under the columns
being summarized. If the Put final summary at line value is m, then at least m final
lines are formatted in the report.

Blank Lines before Text

The Blank lines before text field indicates the number of blank lines between the
body of the report and the first line of final text. Query management allows any
numeric value from 0 to 999. The default vaiue is 0. You can also specify BOTTOM,
which positions the final text at the bottom of the printed page. BOTTOM causes a
number of blank lines to be inserted in order to position the final text immediately
before the page footing text specification on the page. If there is not enough space
for the final text on the current page, it is placed at the bottom of the next page.

Final Text Line Fields
There are 999 lines available for the final text.

Chapter 3. Working with Query Management Programs 3-21

Line
The Line field indicates the line positioning in the final text lines.

Align

The Align field controls the position of the final text within the report line; it refers to
alignment between the first character position on the left and the end of the column
before the first summary column (or the end of the last column in the report if no
final summary data is presented). The following shows the acceptable values:

RIGHT Right-justify the text.
LEFT Left-justify the text.
CENTER Center the text.

The default value is Right for the final text. If there is no associated final text, the
Align value is ignored.

.
Final Text
Specify a maximum of 55 characters of text for each text line. Only &1 (where nis a

column number) is allowed as a variable.

If the text line n is the highest numbered line with nonblank text, then at least n lines
are formatted. This is true even though it could result in some of the formatted lines
being completely blank.

options fields

The Options fields aliow you to specify various report formatting options.

Summary of Values for Options Attributes
Figure 3-9 shows the defaults and possible values for the attributes on the Options

fields.
Figure 3-9. Default Values for Options Fields
Attribute Default Possible Values
Detail line spacing 1 1to4
Outlining for break columns YES YES, NO
Default break text YES YES, NO
Column wrapped lines kept on page YES YES, NO
Column heading separators YES YES, NO
Break summary separators YES YES, NO
Final summary separators YES YES, NO

Detail Line Spacing
The Detail line spacing field indicates the spacing you request between detail lines
in the report. Query management only allows numeric values for this field. Accept-
abie values are 1, 2, 3, or 4, where 1 is single spacing, 2 is double spacing, and so
on. The default value is 1.

3-22 AS/400 Query Management/400 Programmer’s Guide

Outlining for Break Columns

If you assign a usage code for a break to one of the columns, use the Outlining for
break columns field to determine when the value in the break column displays in the
report. YES is the default and displays the value in the break column only when the
value changes. A NO in this field displays the value in the break column on every
detail line in the report.

Default Break Text

The Default break text field indicates whether you are requesting inclusion of the
default break text in the report. The default value is YES. The default break text is
one or more asterisks for each break level: one asterisk for the highest numbered
break level text, two asterisks for the next highest numbered break level text, and so
on. For example, if the report has two control breaks, Break2 and Break4, query
management generates one asterisk to mark the level-4 break and two asterisks to
mark the level-2 break. Default break text is used only for levels with no break text
and numeric values for the Put summary at line field. Default break text is right-
justified on break footing line 1.

Column Wrapped Lines Kept on a Page

If you specify column wrapping for one or more columns in the report, use the
Column wrapped lines kept on page field to determine whether the wrapped
columns can be split between two pages. The default for this field is YES. It pre-
vents splitting wrapped columns between two pages (unless the wrapped column is
longer than the page depth). A NO in this field allows splitting of wrapped columns
between pages.

Column Heading Separators

The Column heading separators field indicates whether the column heading separa-
tors (dashed lines) appear in the report. The default value is YES.

Break Summary Separators

The Break summary separators field indicates whether the break summary separa-
tors (dashed lines) appear in the report. The defauit value is YES.

Final Summary Separators

The Final summary separators field indicates whether the final summary separators
(equal signs) appear in the report. The default value is YES.

Chapter 3. Working with Query Management Programs ~ 3-23

Page Fields

The Page fields allow you to specify headings and footings on a report. Figure 3-10
shows the defaults and possible values for the attributes on the Page fields.

Figure 3-10. Default Values for Page Fields

Attribute Default Possible Values

Blank lines before heading 0 0 to 999

Blank lines before footing 2 0 to 999

Blank lines after heading 2 0 to 999

Blank lines after footing 0 0 to 999

Alignment on heading text CENTER LEFT, CENTER, RIGHT
Alignment on footing text CENTER LEFT, CENTER, RIGHT

Blank Lines before Heading or Footing
The Blank lines before heading or footing fields indicate the number of blank lines
before the page heading or page footing and must be specified as numbers. Query
management allows any numeric value from 0 to 999. The default value is 0 for the
page heading and 2 for the page footing. A page eject always precedes the heading
on each page. The Blank lines before heading field controls the number of blank
lines between the heading and the top of the page. The Blank lines before footing
field controls the number of blank lines between the report body and the first footing
line.

Blank lines are included in the count of the number of lines printed on the page.

Blank Lines after Heading or Footing
The Blank lines after heading or footing fields indicate the number of blank lines
after the page heading or page footing. The fields are defined in query management
as numerics only. Query management allows any numeric value from 0 to 999. The
default value for the page heading is 2 and for the page footing is 0. The Blank lines
after heading field controls the number of blank lines between the last heading line
and the report body. The Blank lines after footing controls:

* The number of blank lines between the last footing line and the end of page
¢ The last footing line and the line containing the date and time and page number

Blank lines are included in the count of the number of lines printed on the page.
Blank lines after footing takes precedence over Blank lines before footing. On a

report page that has extra space left after the body of the report, extra blank lines
are inserted so the Blank lines after footing value is the correct number of lines.

Page Heading Text Line Fields

There are 999 lines available for the page heading text.

3-24 AS/400 Query Management/400 Programmer’s Guide

Line
The Line field denotes the line positioning in the heading text lines.

Align
The Align field controls the position of the page heading text within the report line.
Acceptable values are:

RIGHT Right-justify the text.
LEFT Left-justify the text.
CENTER Center the text.

The default value for headings is Center.

Page Heading Text

The Page heading text field allows you to specify text that appears as the page
heading in the report. You can specify a maximum of 55 characters for each text
line.

If the text line n is the highest numbered line with nonblank text, then n indicates
how many page heading lines are to be formatted. This is true even though using n
could result in some of the formatted lines being completely blank.

Page headings may contain four types of special variables. All variables must be
coded with a leading ampersand (&) to identify them within the heading text.

&n &n is assigned the value from the nth column of the current record.
&DATE Query management replaces the value with the current date.

&TIME Query management replaces the value with the current time.

&PAGE Query management replaces the value with the current page number.
The page number is a 4-digit number ranging from 1 through 9999, with
leading zeros suppressed. After 9999, the counter wraps to 0 and con-
tinues 1o increase for subsequent pages without leading zero sup-
pression.

When the report prints, the page heading appears at the top of each page, formatted
according to the format specification. The variable &n formats according to the edit
code specification, except when column wrapping is specified. If column wrapping
is specified for the column, it is ignored when the data formats into the text.

All variables are resolved when the report is created.

Page Footing Text Line Fields

There are 999 lines available for page footing text.

Line
The Line field denotes the line positioning in the footing text lines.

Chapter 3. Working with Query Management Programs ~ 3-25

'I%l::ag:lign field controls the positioning of the page footing text within the report line.
Acceptable values are:

RIGHT Right-justify the text.

LEFT Left-justify the text.

CENTER Center the text.

The default value for footings is Center.

Page Footing Text

The Page footing text field allows you to specify text for the page footing that is to
appear in the report. You can specify a maximum of 55 characters for each text line.
You can use the following special variables:

&n
&DATE
&TIME
&PAGE

When the report formats, appropriate values are substituted for the variables. When
the report prints, the page footing appears at the bottom of each page, formatted
according to the format specification. The variable &n formats according to the edit
code specification, except when column wrapping is specified. If you specify
column wrapping, it is ignored when the data formats into the text. The formatted
page footing appears once at the bottom of the displayed report.

If the text line n is the highest numbered line with nonblank text, then n indicates
how many page footing lines are to be formatted. This is true even though using n
could result in some of the formatted lines being completely blank.

Procedures

You may find yourself creating reports over and over again that use the same query
management commands. If you do, consider running these steps together by cre-
ating a procedure. A procedure allows you to run a set of query management com-
mands with a single RUN command.

The following example illustrates a procedure called PAYROLL:

'RUN QUERY PAYROLL'
'"PRINT REPORT (FORM=PAYFORM'
'SAVE DATA AS MYLIB/PAYSUMM'

Procedures also allow flexibility in your application. Your application can be written
to run a named procedure. At any time, the procedure can be updated or tailored to
fit a new situation without requiring you to change your application program. The
following sections describe how query management uses procedures to process
commands.

3-26 AS/400 Query Management/400 Programmer’s Guide

Procedure Interaction and Rules
Procedures can make working with query management easier and faster than
coding each program separately. Consider the following rules when creating proce-
dures for use in query management:

¢ The width of a procedure line is limited to the source file record width.

¢ The width of a query management command on a procedure line after procedure
parsing is done is limited to 256 characters. Procedure parsing involves strip-
ping leading and trailing blanks and reducing the number of quotation marks.

¢ Each query management command must be in uppercase English letters.

¢ Procedures can contain only query management commands and blank lines.
(Blank lines have no effect on command processing)

* Procedures can contain a RUN command that runs another procedure or query.

¢ Nested procedures are allowed, and each procedure uses the instance defaults
and selected fields of the procedure that called the one currently running.
Therefore, a PRINT command processed in a procedure that has just run a pro-
cedure with a RUN QUERY command prints the data from the RUN QUERY.

¢ The query command within a procedure must be delimited by quotation marks or
apostrophes (“” or ”’).

¢ The GET command is not functional since query management procedures do not
have high-level language constructs. A GET command within a procedure
results in an informational message queued to the job queue. The message con-
tains the variable name and the value.

Query management ir
strings. Therefore, i
dure.

L]

— i PP P |._
n

reats aii variabie values 0 y a SET command as character
is no p ossible to set an integer variable within a proce-

'-P-o-

¢ A procedure may optionally contain an H record and a comment V record. The
comment record may be used for a procedure description when the procedure is
imported.

Interaction with a query user depends on the interactive state of query management.
This state is controlled by the start-up parameter DSQSMODE on the START
command. If you allow the interactive state, there are further considerations when
using a procedure.

You see a formatted report display as each query in a procedure processes. You
can then page through the report. An exit from the report returns control to the pro-
cedure and causes the next statement to process. For more information on how
each command is processed in a particular instance of the procedure, see “Query
Management Commands” on page 2-1.

Procedure Objects as File Members

The query management procedure is a source physcial file. Query management
allows a specific member to be identified on the RUN PROC, IMPORT PROC,
EXPORT PROC, PRINT PROC, and ERASE PROC commands by allowing members
to be given as part of the query object name. The member name must follow the
query object name and be delimited by parentheses with no intervening blanks. The
following example shows how each of the procedure commands can be changed to
direct query management to a specific member:

Chapter 3. Working with Query Management Programs 3-27

RUN PROC MYLIB/MYPROCS(MYMEMBER)

PRINT PROC MYLIB/MYPROCS(MYMEMBER)

IMPORT PROC MYPROCS(MYMEMBER) FROM QQMPRCSRC

EXPORT PROC MYLIB.MYPROCS(MYMEMBER) TO QQMPRCSRC(MYMEMBER)

If a member is not specified as part of the object name, it is always assumed to be
the first member of the file. If an ERASE PROC is issued and more than one
member exists, only the first member is deleted. If a member is not specified and is
to be created as part of the IMPORT PROC processing, it is created with the same
name as the procedure file name.

Delimiters in the Procedure

Example

Error Handling

All comments must be surrounded by apostrophes, for example, SAVE AS
LASTWKDATA (COMMENT = ‘Last weeks data’. If the comment contains an
internal apostrophe, it is represented by two successive apostrophes ('Last week’’s
data’).

Apostrophes (”’) are supported as procedure string delimiters. When the procedure
statement is surrounded by double quotation marks (“”), internal apostrophes (")
need not be doubled, and vice versa.

The following example illustrates how apostrophes are used in a procedure.

‘SAVE DATA AS LASTWKDATA (COMMENT=''Last week''''s data'"'’
"IMPORT FORM REPT4 FROM MYLIB/FORMS(REPT4) (CONFIRM=YES'
'SET GLOBAL (TBLENAME=MYFILE'

'SET GLOBAL (CMPVAL2=''Joe A. Customer'''

'RUN QUERY REPT4QRY (FORM=REPT4'

'SAVE DATA AS LASTWKDATA'

"PRINT REPORT'

Whenever an error with the severity of FAILURE occurs, procedure processing
stops, and the completion code of the procedure reflects the error. All messages
encountered during procedure processing are queued to the job log, and a summary
message is returned in the communications area.

Error Categories

The following error categories are possible in query management procedures:

¢ Command not allowed in query management procedure.

e Command in query management procedure not valid.

* String in query management procedure not valid.

* Recursion not allowed in query management procedure.

* Maximum procedure nesting level exceeded. A nesting level of 15 is allowed.

3-28 AS/400 Query Management/400 Programmer’s Guide

Exported Objects

This section covers the IMPORT requirements and the AS/400 EXPORT specifica-
tions for the source physical files used and generated during import and export of
query management objects.

IMPORT and EXPORT File Considerations

Query management imports externalized query management objects from and
exports them to source physical files. The following set of general rules applies
when using the source physical file that contains an externalized query manage-
ment object:

¢ An object comment is allowed in an externalized query management form,
query, or procedure. The comment is specified as a V record with the field
number 1001. Maximum comment length is 50 characters and a comment
greater than 50 will be truncated. The comment is generated in the externalized
object on export. The comment record, if present, must immediately follow the H
record. The H record object type field must be either an F for form, Q for query,
or P for procedure.

¢ On import, the following sequence is followed to determine which text
description is used on the query management object.

— |f the COMMENT = option is specified, the value on this option is used.
— If there is member text on the member, the member text is used.

— If there is a comment in the object, this comment is used.

— W there is no comment to use, a blank text description results.

¢ On export, the following sequence is followed to determine which text is written
to the externalized query management object.

— If the COMMENT = option is specified, the value on this option is used.

— In the absence of the COMMENT = option, the text description on the Query
Management object is used.

¢ The H and comment V records are the only parts of the encoded format that are
allowed for query or procedure objects. Attempting to use other record types
like T, R, E, and * will generate unpredictable results.

® An object comment in a procedure must be inside comment delimiters with no
intervening blanks between the start comment and the record identifier. A
comment begins with ’/*" and ends with "*/’. In addition to an object comment,
procedures may have user comments, which are ignored at run time. Comments
may not span multiple lines and may not be used inside other comments.

The following is an example of a procedure with an object and
user comments:

/*H QM4 01 P01 EVWER 010190/07/24 13:30*/

/*V 1001 050 SALES PROCEDURE*/

‘IMPORT QUERY SALES FROM QRYSRC’

‘RUN QUERY SALES’ /* Total sales query */

‘PRINT REPORT’ /* Management report */

The following is an example of an object comment in a query:
HQM4 01 Q01 EVWERO010390/06/28 01:25

Chapter 3. Working with Query Management Programs ~ 3-29

V 1001 050 SALES QUERY
SELECT SALARY FROM SALESFILE WHERE SALARY > 50000

* Query management allows import from and export to multiple member source
files.

® You must create a source file with a record length that allows for 12 positions for
the Source sequence number and Date fields required in each record.

* Query management truncates data and generates a warning message when
exporting to an existing source file if the file does not have a sufficient data
length. The following situations can result in truncation:

— Exporting an SQL query or procedure object to a file that has a data length
less than 79 bytes. Query management creates the truncation warning
message whenever any part of the SQL statement or query command has
been truncated.

— Exporting a query management form object to a file that has an insufficient
data length. The minimum allowed data length is 150 bytes (based on the
maximum length of an exported encoded-format form record, a Columns
table R record). When query management creates a file as a result of the
export, it is created with a data length of 150 bytes. Therefore, a data length
of 150 bytes is recommended. Query management issues the truncation
warning message when any truncation of data occurs. Since parts of the
form are optional, the actual data length required may be less than 150 bytes.

¢ The confirmation message (when CONFIRM=YES is specified on the EXPORT
command) is sent when a member of a source physical file is being replaced. It

is not sent if a new member of an already existing source physical file is being
created

* Query management ignores all columns in the file past column 79 during import
of an SQL query or procedure object. A message is generated if columns are
ignored.

* Query management ignores all columns in the file past column 150 during import
of a form object. A message is generated if columns are ignored.

¢ The AS/400 system does not support files with varying record lengths. There-
fore, prior to or during the transfer to the AS/400 system for import, the file con-
taining the externalized form object in encoded format must be converted to
fixed record format. On export of a form object, query management creates a
file with fixed-length record format. The record is padded with blanks from the
end of meaningful data to the end of the record. Therefore, before importing to
a product that does not support fixed format externalized forms, the file must be
converted to varying-length record format.

° Query management pads the internal representation of each record with blanks
up to and including position 79 when importing an SQL query or procedure
object, if the input file has a data length less than 79 bytes. If the line contains
an open string enclosed in quotation marks, this padding is then included within
this string and can cause unexpected results.

¢ The source physical file that contains the externalized SQL query or procedure
can be any size allowed by the AS/400 system for a source physical file.

Note: Although the source physical file can be any size allowed by the system,
the results may be truncated when imported if they exceed the maximum
allowed limits. For more information on import limits, see the SQL/400*
Reference manual.

3-30 AS/400 Query Management/400 Programmer’s Guide

Display Format

For more information on the externalized procedure and SQL query objects that use
the display format, see “Procedures” on page 3-26 and “Query Capability” on
page 3-6.

Encoded Format

Query management uses the encoded format only for the externalized form object.
This section covers each record type in the encoded format as used by query man-
agement. Query management tolerates fields that are not defined in this manual.

Note: Unrecognized fields are lost during import and are not displayed on subse-

quent exports.

Importing a Form Object
The following rules apply when importing a form object to query management in
encoded format:

The H record must be the first record in the file.

Record types other than H, V, T, R, and * encountered within the file before the E
record are ignored

A warning message is issued if unknown record types are encountered.
Records after the E record are ignored

The T record of the Columns table must immediately follow the header or
comment V record, and must include a numeric count of the number of rows in
the table (an * row count is not allowed).

Query management ignores the control area length (cc) field in the H record.

Query management assumes that the control area length value on all form
object records is 01.

Query management uses the delimiter values specified on each of the form
object records. Therefore, a nonblank delimiter is allowed.

The delimiter value on the H record is ignored, since the H record is column-
specific.

The following fields must be in uppercase when a form object is imported:
— Record identifiers for all records
— The following in the header record:

- Product identifier (QRW, QMF*, QM4, and so on)
- Type of object (F)

- Format of object (E)

- Action (R)

— Data type values (NUMERIC, CHAR) in the R records for the Columns tabie
— All the form object keywords and substitution variables

Duplicate occurrences of data values or tables override previous settings, with
one exception. Query management does not override previous settings if the
new object violates the rules established for an object. For exampie, the number
of columns provided for a form cannot be varied after the first Columns table has
been processed.

Combining the original format and the new format for representing the break
information is not allowed.

Chapter 3. Working with Query Management Programs ~ 3-31

* Object values not included in the input file are set to their default values.

Columns Table Details
The form must contain all of the columns for the underlying data. Form and data
mismatch are not detected until the form is applied at RUN or PRINT time.

When the entire Columns table is processed, unspecified fields result in the default
values at run time. The default values are applied at run time and are those that
were defined at file definition from the table you are querying. Export of a form that
was imported with missing Columns table fields results in an externalized form that
has the same Columns table fields missing. Query management allows and uses
AS8/400 edit codes when the defaults are applied at run time. A warning message is
generated at import and export when these fields are not specified.

Query management allows multiple occurrences of the Columns table but does not
allow subsequent occurrences of the table to alter the number of columns.

Query management supports the import of forms that specify the data types of
DATE, TIME, and GRAPHIC, although SQL/400 conventions and the AS/400 database
do not support these data types. Query management allows importing a form object
containing these data types, but an attempt to apply the form results in data and
form mismatch errors at run time. A warning message is generated if a form object
is imported specifying an unsupported data type. Values in the Columns table that
are not recognized or not valid are ignored, and default values are assumed.

Exporting a Form Object

Query management uses blank delimiters, regardless of the delimiter used on the
imported object. The information that was defaulted at import time is exported for
all report sections other than Columns. Query management exports form objects
using the new format to describe the break information.

Records that Make Up the Base Encoded Format
The formats of the records that make up the base encoded format are described in
the following sections.

For each record type there is a description of its purpose, contents, format, and a
set of notes on its use. There are also record descriptions that provide a list of the
possible values for each field in the record. Some of these fields (particularly in the
header record) may contain only a single value. This is intentional and often signi-
fies that other values for the field will be allowed in the future.

3-32 As/400 Query Management/400 Programmer’s Guide

The base set of record types in the encoded format includes:

Type Descriptive Name
Header (H) record

Value (V) records

Table row (R) records

H
Y
T Table description (T) records
R
E

End-of-object (E) records

Header (H) Record

Application data (*) records

The header (H) record identifies the contents of an externalized object (an object is
an externalized object when it is being displayed either online or as a printed copy).

It contains information describing the characteristics of the object and the file

format.

Figure 3-11 summarizes the contents of the H record.

Ll et
d dd dddddd d d d d

B B T . P TN U

FORMAT: Hdppp rr t 0o f u s n a cc ii yy/mm/dd hh:mm

WHERE:

b= =

ppp

rr

fixed format

indicates this is an object Header record
is the data field delimiter for this record
only -- a blank
is the product identifier:
QM4
is the QM4 level in which the object
was produced:
03, 04, 05, and so on.
is the type of object in this file:
F for form
Q for query
P for procedure

Figure 3-11 (Part 1 of 2). Header Record Description

Chapter 3. Working with Query Management Programs

3-33

00

cc

ii

hh:mm

EXAMPLE:

yy/mm/dd

is the QM4 object level at the time when the
given type of object was produced:

01, 02, 03, and so on.
is the format of the object in this file:

E for encoded format
indicates the status of the object:

E for contains Errors

W for contains Warnings

V for Valid
indicates the subset of the object included:

W for Whole object
indicates the language of the exported
object.

E English

is the action against the item:

R for Replace object
is the length of the control area in the
beginning of each following record (including
the 1-byte record type):

01 for Forms
is the Tength of the integer length fields
specified in "V" and "T" type records:

03 for all objects
date stamp
time stamp

HQM4 03 FO3 EVWEROL 03 89/09/23 15:21

(QM4 form file at "object Tevel" 3, written in the
encoded format, with no errors or warnings, in entirety
in English, usable for complete replacement, with 1
byte of control area, and 3 bytes for integer lengths)

Figure 3-11 (Part 2 of 2). Header Record Description

Figure 3-12 summarizes the location and contents of each of the fields in the H
record. The field names used in Figure 3-12 are defined in Figure 3-11, which
describes the entire H record. Object-specific values are noted as appropriate.

3-34 AS/400 Query Management/400 Programmer’s Guide

Possible Required Default if

Field Columns Values on Input Blank on Input

H 01 H yes

d 02 (bTank) no (not used on input)
ppp 03-05 QM4 yes

rr 07-08 03 no (not used on input)
t 10 FQP yes

00 12-13 03 no current object level
f 15 E yes

u 17 EwWYV no (not used on input)
s 19 W no (not used on input)
n 21 E (English) no (not used on input)
a 23 R yes

cc 25-26 01 (Form) no (not used on input)
ii 28-29 03 no (not used on input)
yy/mm/dd 31-38 (dates) no (not used on input)
hh:mm 40-44 (times) no (not used on input)

Figure 3-12. Header Record Fields

Notes to Figure 3-12:

The H record must be the first record in the external file.

Those fields (or portions of fields) left unspecified are assumed to be blank if the
record is shorter than its fixed format length.

The object level (00) is used to denote a change in the externalized format of an
object. When a particular level of query management changes the external
format of an object, the object’s level number is increased by 1. An application
can use this number to determine the format of the object’s records.

The control area (with length cc) is a fixed area in the beginning of each of the
encoded format records (except the H record) that contains control information
pertaining to the given record; the control area contains information such as the
record type and a record continuation indicator.

The subset, format, action, control area length, and integer length fields are
included in the H record for future extensions to the encoded format.

Additional fields will be added to the end of the H record in the future.

Chapter 3. Working with Query Management Programs ~ 3-35

Value (V) Records

The value (V) record provides a value for a single nontabular field in an object (such
as a Form Options field). It includes the unique field number, the field’s value, and

its length.

Figure 3-13 summarizes the contents of the V record.

FORMAT:

Ve..cdf..f 1..1 v..v

WHERE: v

VooV

control area

record info

indicates this is a Value record
is the remainder of the control area for this
record
(reserved for future use)
is the data field delimiter for this record
only -- a blank
is the field number
for example 1201, 1509
indicates the length of the data value:
an * used instead of a numeric value
indicates that the data value is delimited
by the end of the record
is the data value (in printable form)

EXAMPLES: V 1511 004 NONE

(Form field 1511 with length of 4 and value 'NONE')

Figure 3-13. Value Record Description

Figure 3-14 on page 3-37 summarizes the location and contents of each of the fields
in the V record. The field names used in Figure 3-14 on page 3-37 are defined in
Figure 3-13 which describes the entire V record. Object-specific values are noted

as appropriate.

3-36 As/400 Query Management/400 Programmer’s Guide

Control Area

Field Columns Values on Input Blank on Input
01) yes

..C 02 (x) n/a
02 (blank) n/a

Possible Required Default if

Remainder of Record

Offsets past Possible Required Default if

Field Control Area Values on Input Blank on Input
d +01 (blank) no
f..f +02-05 1001-9999 yes
1..1 +07-09 * yes
000-999
V..V +11-end (data) no (blank)

Figure 3-14. Value Record Fields

Notes to Figure 3-14:

An omitted data value (such as end-of-record), or blanks only following the
asterisk (*), indicates that a blank value is to be applied to this field.

To set a field to blank, the field must have a specified positive length and a biank
data value.

Fields are set to their default values when the object is updated if:

— The specified length is zero
— No length is specified

Query management issues a warning when it finds a field length of zero to indi-
cate that the default value is set for this field.

Query management uses the specified length and issues a warning message if
the specified length is shorter than the supplied data value.

Query management sets the data value without extending beyond the end of the
record and issues a warning message if the specified length is longer than the
supplied data value.

IBM is keeping the length field open for future V record uses in which an explicit
length may be specified (for example, to indicate significant blanks), and for the
possibility of V record expansion.

Table Description (T) Records

The table (T) record describes the content and format of the table of values that
follows. The contents of a T record determine the contents of all row (R) records for
this table. A T record indicates which table is being described (by its unique table
number), which columns are included (by their unique field numbers), in what order
they appear, and the lengths of the values in these columns.

Figure 3-15 summarizes the contents of the T record.

Chapter 3. Working with Query Management Programs ~ 3=37

FORMAT: Tc..cdt..t no.nmeem f..f 1..1 fo.f 1..1

e
d d d d d d d

control area repeating field & length pairs
WHERE: T indicates this is a Table description record
c..C is the remainder of the control area for this
record, consisting of:
X
where:
X is blank (reserved for future use)
d is the data field delimiter for this record
only -- a blank
t..t is the table number
for example 1110, 2710
n..n is the number of rows ("R" records) in this
table:

an * used instead of a numeric value
indicates that the table consists of all
of the "R" records which follow
m..m is the number of columns (field and Tength
pairs) in this table
for exampie 0093, 006

f..f is the field number for this column
for example 1113, 2712
1..1 is the length of the data values in this
column

for example 005, 012
EXAMPLES: T 11106 5 2 1112 7 1113 18

(Form table 1110 containing 5 rows and 2 columns, with
column 1112 of length 7, and column 1113 of length 18)

Figure 3-15. Table Record Description

Figure 3-16 on page 3-39 summarizes the location and contents of each of the fields
in the T record. The field names used in Figure 3-16 on page 3-39 are defined in
Figure 3-15 which describes the entire T record. Object-specific values are noted
as appropriate.

3-38 AS/400 Query Management/400 Programmer’s Guide

Control Area

Field Columns Values on Input Blank on Input
T 01 T yes
c..c 02 (x) n/a
X 02 (blank) n/a

Possible Required Default if

Remainder of Record

Offsets past Possible Required Default if

Field Control Area Values on Input Blank on Input
d +01 (blank) no
t..t +02-05 1001-9999 yes
n..n +07-09 * yes
000-999
m..m +11-13 000-999 yes
f..f +15-18 1001-9999 yes
+24-27
.. +20-22 006-999 yes
+29-31
and so on.

Figure 3-16. Table Record Fields

Notes to Figure 3-16:

An error condition results if the number of R records following the T record does
not exactly match the numeric row count specified in the T record.

The number of f..f / .1 pairs is limited to the number of columns in the given
table.

The number of columns should agree with the number of column field numbers
and lengths. If not, a warning message is issued, and the number of columns
used is the number of field numbers and column data value lengths in the T
record.

The order of i..f and I..I pairs is arbitrary.

All of the R records immediately following a T record (that is, those associated

with a single table) must contain values of the exact lengths specified for each

column in the T record. Records shorter than the implied length result in blank
or blank-padded values.

Query management sets columns with a length of zero (or not specified) to their
default values when the object is updated.

Query management issues a warning message for columns with a specified
length of zero to indicate that it set the default value for this column.

A table with zero rows in it (or not included in the file) has the same effect as
applying columns of length zero to the table; query management sets all of the
columns to their default values.

Chapter 3. Working with Query Management Programs ~ 3-39

* To set a column field to blank, the column must have a positive length inthe T
record and a blank value in the R record.

Table Row (R) Records

The table row (R) record provides a set of values for a single row in the current
table. It consists of an ordered list of values as described by the associated T
record. An R record must exactly match the description of the positions and lengths
of the data values as specified in the T record.

Figure 3-17 summarizes the contents of the R record.

FORMAT: Rc..cdv..v v..v v..v ...

control area 1list of values

WHERE : R indicates this is a table Row record
c..C is the remainder of the control area for this
record, consisting of:
X
where:
X is blank (reserved for future use)
d is the data field delimiter for this record
only -- a blank
V..V is the data value for this row and column (in
printable form)
EXAMPLES: R 2 SALARY

(Form row with first column value of ' 2' with
length 7, and second column value of 'SALARY' where
it's assumed a Tength of at least 6 was given in the
T record)

Figure 3-17. Row Record Description

Figure 3-18 on page 3-41 summarizes the location and contents of each of the fields
in the R record. The field names used in Figure 3-18 on page 3-41 are defined in
Figure 3-17 which describes the entire R record. Object-specific values are noted
as appropriate.

3-40 As/400 Query Management/400 Programmer’s Guide

Control Area

Field Columns

R 01
c..c 02
X 02

Possible Required Default if
Values on Input Blank on Input
R yes

(x} n/a

(blank) n/a

Remainder of Record

Offsets past Possible Required Default if
Field Control Area Values on Input Blank on Input
d +01 (blank) no
V..V +02—xx (data) no (blank)
+(xx+2)-yy
+(yy+2)-zz
and so on .

Figure 3-18. Row Record Fields

Notes to Figure 3-18:

¢ An R record must immediately follow another R record, or a T record.

¢ The number of v..v values must exactly match the description in the associated T

record.

¢ A data value length of zero in the associated T record indicates that no value is
to be applied to this row and column of the object; it is set to its default value.

However, the presence of the field in the T record requires that the R record

contain an extra delimiter for this field; a zero-length value results in one delim-
iter followed by another in the R record.

Chapter 3. Working with Query Management Programs

3-41

End-of-Object (E) Record
The end-of-object (E) record delimits the end of the object.

Figure 3-19 summarizes the contents of the E record.

R TUTTS PR i . . e T

FORMAT: Ec..c

control area

WHERE: E indicates this is an End-of-object record
c..C is the remainder of the control area for this
record

(reserved for future use)

EXAMPLE: E

Figure 3-19. End-of-Object Record Description

Figure 3-20 summarizes the location and contents of each of the fields in the E
record. The field names used in Figure 3-20 are defined in Figure 3-19 which
describes the entire E record. Object-specific values are noted as appropriate.

Control Area
Possible Required Default if
Field Columns Values on Input Blank on Input
E 01 E yes
c..c 02 (x) n/a
X 02 (blank) n/a

Figure 3-20. End-of-Object Record Fields

Notes to Figure 3-20:
¢ The E record should be the last record in the external file.

* Those fields (or portions of fields) left unspecified are assumed to be blank if the
record is shorter than its fixed format length.

3-42 AS/400 Query Management/400 Programmer’s Guide

Application Data (*) Record

The application data (*) record allows you to include your own data associated with
the given object in the external file. You may choose to use these as comment
records to further describe the object in the file.

Figure 3-21 summarizes the contents of the * record.

FORMAT: *V..v
WHERE: * indicates this is an application data record
V..V is the data value(s) produced by an appli-
cation program (preferably in printable form)

EXAMPLE: * This is the Form that groups by DEPT.

(comment record in a Form file)

Figure 3-21. Application Data Record Description

*

Figure 3-22 summarizes the location and contents of each of the fields in the
record. The field names used in Figure 3-22 are defined in Figure 3-21 which
describes the entire * record. Object-specific values are noted as appropriate.

Control Area

Possible Required Default if

Field Columns Values on Input Blank on Input
* 01 * yes
V..V 02-end (data) no (not used on input)

Figure 3-22. Application Data Record Fields

Notes to Figure 3-22:

¢ Application data records may appear anywhere in the external file except ahead
of the H record.

¢ Other than validating the format of the record, the * record is ignored and has no
effect on the input process.

* Those fields (or portions of fields) left unspecified are assumed to be blank if the
record is shorter than its fixed format length.

[=] a 2.91n N AA i A o nia Af Aam AavmAartad A1 AaKL PA AR A AR an + £ ian A
Fiyuirc v~cu Vil pay®c o=44 10 dil CAAIpPIT Ul all CAPUIICU UCT Yy liiatiayeiinceiit tuirni. A
i

form may be edited and subsequently imported to obtain the desired report format-
ting. See the list of record types and field numbers in Figure 3-24 on page 3-48 to
match the field numbers to specific report attributes. The * records, which are valid
comment records, are used to explain the meaning of certain parts of the form. The
examples given are of certain T records with R records (tables) and V records. The
same interpretation applies to records of the same types in the remainder of the
form.

Chapter 3. Working with Query Management Programs 3-43

QM4 01 F 01 EV W E R 01 03 90/3/19 14:27

1001 Sales Form

The 'H' record must be the first record in the file as above.

The columns table must immediately follow the 'H' record unless there
are comment records.

The T record describes the information which follows in the R records
The field number '1110' identifies the table as the columns table.
| The '005' means that there are 5 columns (R records)

| following the 'T' record.

The '006' means that there are 6 field number, field

| pairs in the T record.

Starting with '1112' are the field number, field

pairs which describe the values in the R record.

For example '1112' corresponds to 'Data type'

| (see the table of field numbers) and has a

length of 8.

If T wanted to change the indent for a column

I wo Id look in the table of field numbers

a at the indent identifier is '1115'.

Counting the field numbers, starting
| with '1112', I find that '1115'
| is 3rd in the series of

| field length pairs and has a
|____ field width of 6.

I I I

O ———— e — e e — —— . —— — — —

|
I
I
| I
l I
I I
I I
I I
I I
I I
I b
I I
I I
| |
I [
| I |
I L1
1 006 1

I
06

[}
o1 —

|
110

112 008 1114 007 1115 006 1116 005 1117 005 1113 040

The indent value is the third field over in the
[R records and contains a 3 for every column.
| The values are left justified and separated
|_ by blank delimiters.
I

CHAR 3 6 C NAME

CHAR BREAK1I 3 6 C DEPARTMENT

NUMERIC SUM 3 6 L YEARS

NUMERIC SUM 3 6 L SALARY

NUMERIC SUM 3 6 L COMMISSION

A 'V' record describes a single attribute in the form.
The '1201' field number is the blank lines before page
| heading attribute.

| It has a value length of 1.

| | It has a value of 1.

_ 1_ 1.

T

1201 001 1

1202 001 2

H
)
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
T
*
*
*
*
*
R
R
R
R
R
*
*
*
*
*
*
*
v
)

Figure 3-23 (Part 1 of 4). Sample Externalized Form

3-44 As/400 Query Management/400 Programmer’s Guide

*
*
T
R
R
R
R
R
*
*
*
*
v
v
*
T
R
R
R
v
v
T
R
R
R
R
R
v
)
v
v
v
v
v
*
*
*
*
*
*
v
V
v
V
v
T
R
v
V
v
v
T

The following table describes the page heading text.
The fields used are the line number, alignment, and text respectively.
1210 005 003 1212 004 1213 006 1214 055

1 CENTER B R T T T T T T e S st et Lk
2 CENTER *kdk *kkk
3 CENTER **** COMPANY REPORT Hown
4 CENTER *kkk *hkk
5 CENTER dkkkhkkhkhrkhrhhhhhkkhhhkhrrkkhrkhhrhhhrhrhhrkhirid

The '*' in place of a numeric length indicates to use the
| remainder of the record for the length of the data value.
I_
[

1301 * 1

1302 * 2

Page footing text

1310 063 003 1312 004 1313 006 1314 055

1 CENTER XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

2 CENTER XXXXXXXX Internal Use Only XXXXXXXX

3 CENTER XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

1401 003 YES

1402 001 2

1410 005 003 1412 004 1413 006 1414 055

1 LEFT B R T T T T Y T T e T R L
2 LEFT kkkkkdk *kkkkkkx
3 LEFT ewwiwns END OF REPORT Fkkkk
4 LEFT kkkkkkk *kkkkkkk
5 LEFT fkkhkrhhkkhkhhhkkhkkhkrhkhhkhrhrhhkhrhhkkhkhhhhrdkhxhrixd

1501 * 1
1502 003 YES
1503 003 YES
1505 003 YES
1507 003 YES
1508 003 YES
1510 003 YES
The following section shows the break information using the
new format.
The value in the '3080' V record indicates the break
| level which applies to all of the break information
| until the next '3080' V record is encountered.
| | The break level in this example is 1.
3080 001 1
3101 002 NO
3102 002 NO
3103 001 O
3104 001 O
3110 001 003 3112 004 3113 006 3114 055
1 CENTER BREAK 1 HEADING
3201 062 NO
3202 002 NO
3203 001 ©
3204 001 ©
3210 003 003 3212 004 3213 006 3214 055

Figure 3-23 (Part 2 of 4). Sample Externalized Form

Chapter 3. Working with Query Management Programs

3-45

CENTER khkkhkhkkkkkhkhkbddhhkrdhhhhrhhhd

1
2 CENTER **** BREAK 1 FOOTING ikl
3 CENTER T L L T T R T s
Break level 2 information
3080 001 2
3101 003 YES
3102 003 YES
3103 001 ©
3104 001 ©
3110 002 003 3112 004 3113 006 3114 055
1 CENTER BREAK 2 HEADING
2 CENTER ==-mmmmmmmeee
3201 002 NO
3202 002 NO
3203 001 ©
3204 001 0
3210 003 003 3212 004 3213 006 3214 055

1 CENTER LR T T T T T T

2 CENTER #**** BREAK 2 FOOTING Fhkk
3 CENTER LR R 2 L T T R T)
Break level 3 information

3080 001 3

3101 003 YES

3102 003 YES

3103 001 0

3104 001 0

3110 002 003 3112 004 3113 006 3114 055
1 CENTER BREAK 3 HEADING

2 CENTER —mmmmmmmeeee o

3201 002 NO
3202 002 NO
3203 001 0
3204 001 0
3210 003 003 3212 004 3213 006 3214 055

1 CENTER LR L T T T Y YT

2 CENTER **** BREAK 3 FOOTING ki
3 CENTER dhhkhkhkkhkhkhkhkkhkrhhhhhhrrkrrkhhrr
Break level 4 information

3080 001 4

3101 003 YES

3102 003 YES

3103 001 0

3104 001 ©

3201 002 NO

3202 002 NO

3203 001 0

3204 001 0

T 3210 003 003 3212 004 3213 006 3214 055

U0 A< < << D V0 A< <O < = < == * X XWX

-

S < << <K< sE<<< VDI —A<< <<

Figure 3-23 (Part 3 of 4). Sample Externalized Form

3-46 AsS/400 Query Management/400 Programmer’s Guide

CENTER #****¥kkdkkkkkhhdiddidiihihhhik

R1

R2 CENTER **** BREAK 4 FOOTING ok
R 3 CENTER khkkkkhkhkkkhkhkkhhkhkhkhkhkhhkhhhkkkx
* Break level 5 information
V 3080 001 5

V 3101 003 YES
V 3102 003 YES
V 3103 001 O

V 3104 001 0

V 3201 002 NO
V 3202 002 NO
V 3203 001 0

V 3204 001 O

* Break Tevel 6 information

V 3080 001 6

V 3101 003 YES

V 3102 003 YES

V 3103 061 0

V 3104 001 0

V 3201 002 NO

V 3202 002 NO

V 3203 001 0

V 3204 001 0

T 3210 003 003 3212 004 3213 006 3214 055
R

R

R

*

*

E

1 CENTER dkkkkkkhkkhkhkkkkdkkkhkkkkkk

2 CENTER *** BREAK 6 FOOTING ***

3 CENTER kkkhkkkkhkkhhhhhkkkkhhkkhkk

The 'E' record is the last record in the file. Records after
the 'E' record will be ignored.

Figure 3-23 (Part 4 of 4). Sample Externalized Form

You can edit an externalized form object to change your report format. The
externalized form object layout is in the encoded format, which uses record types
and field number identifiers to represent the form. Each field number identifier in
the externalized form object represents a different attribute in the report. After
making changes to the externalized form, you must import it for the changes to take
effect.

Figure 3-24 on page 3-48 shows the descriptive names of the encoded form fields.

Chapter 3. Working with Query Management Programs 3-47

Record Table Field
Type number number Description

v 1001 Object Comment

*hkkkkkkhhkhhhhkhhkhdhhhkhhhhhhhhhrohkhiik

*** Columns section of the report ***
*hkkkkkdhkhkhkkhhhkhkkhdhkrrhdhddhdhkrdhrhdd

T 1110 Column Fields

1112 --Column data type
1113 --Column heading
1114 --Column usage
1115 --Column indent
1116 --Column width
1117 --Column edit

1118 --Column sequence

kkkkkkhkkhhkkkhhkhhhkhhhhhhkhkkdhhhkkhhk

% Page section of the report *
kkkkkkhkkkhhhhhkhdhhkkdhkrhhhhhrhhrkkrkk

v 1201 Blank lines before heading
v 1202 Blank lines after heading
T 1210 Page heading text table
1212 --Page heading line number
1213 --Page heading align
1214 --Page heading text
) 1301 Blank Tines before footing text
) 1302 Blank lines after footing text
T 1318 Page footing text table
1312 --Page footing line number
1313 --Page footing align
1314 --Page footing text
dkkkkkhkkkkhkhhhdhhkhdhhhkhhhdrdhrdrtdrsd
*** Final section of the report ***
kkkkkhkhkkhhhhhhhhhhhdhhhhhhhhhkdhhhhdii
v 1401 New page for final text
v 1402 Put final summary at line
v 1403 Skip lines before final text
T 1410 Final text table
1412 --Final text Tline number
1413 --Final text align
1414 --Final text
*kkkkkhkkkkhkhhkhkhkkkkkhkihhkhhhkhhihhhdkhhkhhhkdk
** Options fields section of the report **
*hkhkkhhkkkkhhkkkhkhhkhkhhhhkhhkhdhdhkddhhrrodrhddd
) 1501 Detail 1ine spacing
v 1502 Outlining for break columns
v 1503 Default break text
v 1505 Column wrapped lines kept on a page
v 1507 Column heading separators
v 1508 Break summary separators
v 1510 Final summary separators

Figure 3-24. Descriptive Names of Encoded Format Form Fields

3-48 AS/400 Query Management/400 Programmer’s Guide

A new format exists for the break information in the encoded object. To support the
forms that use the original format, query management supports both the original
format and the new format to describe the break information. An attempt to use a
combination of the two formats is not allowed and the import request is ended. All
form objects are exported using the new format.

Figure 3-25 is a description of the new format that provides for a break level indi-
cator (V record with field number 3080) to indicate the break level. All of the break
information that follows each break level indicator is applied to the break level
value in the 3080 V record.

The new format uses a single set of field numbers to describe the break heading
and footing information, which allows for more efficient future expansion of the
number of break levels supported.

Record Table Field Description
Type number number
FThkkkkkkkhkkkhkhkkkhkhhkhkkhhkkhhhrhhhkk

* Break fields section of the report *
dkhkkkkhkkhhkkhdhhhhhdhdhkrrhdkkkhhrrhhhhr

v 3080 Break level indicator

) 3101 New page for break heading
v 3102 Repeat column headings

v 3103 Blank lines before heading
v 3104 Blank lines after heading

T 3110 Break heading table

v 3112 --Break heading line number
v 3113 --Break heading align

v 3114 --Break heading text

v 3201 New page for break footing
v 3202 Put break summary at Tine

v 3203 Blank lines before footing
v 3204 Blank lines after footing

T 3210 Break footing table

v 3212 --Break footing 1line number
v 3213 --Break footing align

v 3214 --Break footing text

Figure 3-25. Preferred Format for Encoded Break Information

Figure 3-26 on page 3-50 is a description of the original format for representing the
break information in the encoded object. This format uses a unique field number for
each of the break attributes. This format cannot be used in combination with the
new break format.

Chapter 3. Working with Query Management Programs 3-49

Record Table
Type number
v
v
v
v
T 1610
v
v
v
v
v
v
v
T 1710
v
v
v
v
'
v
v
T 1810
V
v
v
v
v
v
v
T 1910
v
v
v
v
v
v
v
T 2010
v
v
v

Field
number

1601
1602
1603
1604

1612
1613
1614

1701
1702
1703
1704

1712
1713
1714

1801
1802
1803
1804
1812
1813
1814

1901
1902
1903
1904

1912
1913
1914

2001
2002
2003
2004

2012
2013
2014

Description

dhkhkhkkhhkkkhkkhkhhhhkhkhhhdhhrrrhhhhrrdird

fields section of the report *
dhkkkkhkkkkkkhkhkhkhkhhhkhdhhkrhhrhrdhhrddts

* Break

Break 1:
Break 1:
Break 1:
Break 1:
Break 1:
--Break
--Break
--Break

Break 1:
Break 1:
Break 1:
Break 1:
Break 1:
--Break
--Break
--Break

Break 2:
Break 2:
Break 2:
Break 2:
Break 2:
--Break
--Break
--Break

Break 2:
Break 2:
Break 2:
Break 2:
Break 2:
--Break
--Break
--Break

Break 3:
Break 3:
Break 3:
Break 3:
Break 3:
--Break
--Break
--Break

New page for heading
Repeat column headings
Blank lines before heading
Blank 1ines after heading
Heading table

1: Heading line number

1: Heading align

1: Heading text

New page for break footing
Put break at summary line
Blank Tines before footing
Blank Tines after footing
Footing table

1: Footing line number

1: Footing align

1: Footing text

New page for heading
Repeat column headings
Blank Tines before heading
Blank Tines after heading
Heading table

2: Heading Tine number

2: Heading align

2: Heading text

New page for break footing
Put break at summary line
Blank lines before footing
Blank lines after footing
Footing table
2: Footing line number
2: Footing align
2: Footing text

New page for heading
Repeat column headings
Blank Tines before heading
Blank lines after heading
Heading table

3: Heading Tine number

3: Heading align

3: Heading text

Figure 3-26 (Part 1 of 3). Original Format for Encoded Break Information.

3-50 As/400 Query Management/400 Programmer’s Guide

v
v
v
v
T 2110
v
v
v
)
v
v
v
T 2210
v
v
)
v
)
)
v
T 2310
v
)
)
v
)
)
v
T 2410
)
v
)
v
v
v
v
T 2510
)
v
)

2101
2102
2103
2104

2112
2113
2114

2201
2202
2203
2204

2212
2213
2214

2301
2302
2303
2304

2312
2313
2314

2401
2402
2403
2404

2412
2413
2414

2501
2502
2503
2504

2512
2513
2514

Break 3: New page for break footing
Break 3: Put break at summary line
Break 3: Blank lines before footing
Break 3: Blank lines after footing
Break 3: Footing table

--Break 3: Footing line number
--Break 3: Footing align

--Break 3: Footing text

Break 4: New page for heading

Break 4: Repeat column headings
Break 4: Blank lines before heading
Break 4: Blank lines after heading
Break 4: Heading table

--Break 4: Heading line number
--Break 4: Heading align

--Break 4: Heading text

Break 4: New page for break footing
Break 4: Put break at summary line
Break 4: Blank lines before footing
Break 4: Blank Tines after footing
Break 4: Footing table

--Break 4: Footing 1ine number
--Break 4: Footing align

--Break 4: Footing text

Break 5: New page for heading

Break 5: Repeat column headings
Break 5: Blank lines before heading
Break 5: Blank lines after heading
Break 5: Heading table

--Break 5: Heading Tine number
--Break 5: Heading align

--Break 5: Heading text

Break 5: New page for break footing
Break 5: Put break at summary line
Break 5: Blank lines before footing
Break 5: Blank lines after footing
Break 5: Footing table

--Break 5: Footing line number
--Break 5: Footing align

--Break 5: Footing text

Figure 3-26 (Part 2 of 3). Original Format for Encoded Break Information.

Chapter 3. Working with Query Management Programs

3-51

v 2601 Break 6: New page for heading

v 2602 Break 6: Repeat column headings

v 2603 Break 6: Blank lines before heading
v 2604 Break 6: Blank lines after heading
T 2610 Break 6: Heading table

] 2612 --Break 6: Heading line number

v 2613 --Break 6: Heading align

v 2614 --Break 6: Heading text

v 2701 Break 6: New page for break footing
v 2702 Break 6: Put break at summary line
v 2703 Break 6: Blank lines before footing
v 2704 Break 6: Blank lines after footing
T 2710 Break 6: Footing table

v 2712 --Break 6: Footing line number

v 2713 --Break 6: Footing align

v 2714 --Break 6: Footing text

Figure 3-26 (Part 3 of 3). Original Format for Encoded Break Information.

Using DBCS Data in Query Management

The following sections explain how using double-byte character set (DBCS) data in
query management functions is different from using single-byte data.

Input Fields
All query management and Systems Application Architecture (SAA) Query input
fields, with the exception of names, allow DBCS data.

Queries
The following query management areas can be either DBCS or mixed single-byte
and DBCS:

e Substitution values

¢ Strings enclosed in quotation marks in character data-type fields

e Comments

e Graphic strings to be entered or compared to graphic data type fields

All SQL keywords must be in English.

importing DBCS Data

You can import DBCS data in queries, procedures, and forms. When importing
DBCS queries and procedures in this way, be certain the record length does not
exceed 79 bytes.

Printing DBCS Data

If you are using DBCS data and the page splits, printing resumes on the second and
subsequent pages of the report at the fourth-byte position from the left side of the

page.

3-52 AS/400 Query Management/400 Programmer’s Guide

Query Management Objects

The following two SAA Query object types are defined in the SAA CPI Query Refer-
ence manual:

* Query
e Form

This section discusses how query management maps these SAA Query-specific
objects to AS/400 objects. Support for query management requires the definition of
two object types: the query management query object and the query management
form object. The OS/400 object type for the query management query object is
QMQRY. The 0S/400 object type for the query management form object is
QMFORM. The query management procedure is stored as a single member source
physical file.

Query Management CL Commands

The following query management CL commands support the QMQRY and the
QMFORM objects:

STRQMQRY Start Query Management Query
CRTQMQRY Create Query Management Query
CRTQMFORM Create Query Management Form
DLTQMQRY Delete Query Management Query
DLTQMFORM Delete Query Management Form
RTVQMQRY Retrieve Query Management Query

RTVQMFORM Retrieve Query Management Form
WRKQMQRY Work with Query Management Query
The WRKQMQRY CL command supports the following CL com-

mands:

DLTQMQRY Delete Query Management Query
STRQMQRY Start Query Management Query
CHGOBJD Change Object Description

WRKQMFORM Work with Query Management Form
The WRKQMFORM CL command supports the following CL com-

mands:
DLTQMFORM Delete Query Management Form
CHGOBJD Change Object Description

Generic Commands
You can run the following generic commands against the QMQRY and QMFORM

objects:
MOVOBJ Move Object
RNMOB.J Rename Object

GRTOBJAUT Grant Object Authority
RVKOBJAUT Revoke Object Authority

Chapter 3. Working with Query Management Programs 3-53

CHGOBJOWN
SAVOBJ
SAVCHGOBJ
RSTOBJ
DSPOBJD
DSPOBJAUT
CHKOBJ
CHGOBJD
EDTOBJAUT
WRKOBJ
CRTDUPOBJ

Change Object Authority
Save Object

Save Changed Object
Restore Object

Display Object Description
Display Object Authority
Check Object

Check Object Description
Edit Object Authority
Work with Object

Create Duplicate Object

Creating a Query Management Object
Use the following information to create query management objects:

e Query

Follow these steps to create a query management query (QMQRY) object:

1.

Create the source as a member in a source physical file (a file record length
of 91 bytes is recommended) using any of the following methods:

Use an editor to type the SQL statement and save it in a file.

Use Interactive Structured Query Language (ISQL) to develop the SQL
statement interactively, save the session in a file, and then edit it to
remove extraneous lines.

Use the RTVQMQRY CL command or EXPORT QUERY CPl command to
retrieve the query source from a QRYDFN object defined using Query/400.

Use the RTVQMQRY CL command or EXPORT QUERY CPI command to
retrieve the query source from a QMQRY object created previously.

Restore a file containing query source exported from another SAA system
environment.

2. Use the CRTQMQRY CL command or IMPORT QUERY CPiI command to
create the QMQRY object from the query source.

e Form

Follow these steps to create a query management form (QMFORM) object:

1.

Create the source as a member in a source physical file (a file record length
of 162 bytes is recommended) using any the following methods:

Use an editor to type the encoded form and save it in a file.

Use the RTVQMFORM CL command or the EXPORT FORM CPI command
to retrieve the form source from a QRYDFN object defined using
Query/400.

Use the RTVQMFORM CL command or the EXPORT FORM CPl command
to retrieve the form source from a QMFORM object created previously.

Restore a file containing form source exported from another SAA system
environment.

3-54 As/400 Query Management/400 Programmer’s Guide

2. Use the CRTQMFORM CL command or IMPORT FORM CPI command to
create the QMFORM object from the form source.

e Procedure

The query management procedure object is stored as a single-member source
physical file. You can create the source file through AS/400 CL commands or
through the query management IMPORT command. The query management pro-
cedure can contain up to 408 lines, and it should have a record width of 79 bytes.

Note: This format is not SAA-compatible and may not successfully exportto a
non-AS/400 SAA query management object.

e Tables

Table objects are any single-format, single-member physical or logical files that
you can create through SQL/400 conventions or AS/400 database management.
Query management does not support manipulation of System/36 mulitiple format
files or AS/400 multiple member files (except in cases where processing defaults
to *FIRST).

Chapter 3. Working with Query Management Programs ~ 3-55

3-56 AS/400 Query Management/400 Programmer’s Guide

Chapter 4. Instance Processing

A query management instance is a progression of steps that results in creating a
displayed or printed report from the data found in a database file or Query/400 defi-
nition. Query management puts the data specified into a DATA set (the active infor-
mation resulting from running a query) calied a query management query (QMQRY)
object, which is organized by the query management form (QMFORM) object. By
changing the form, you can use the same QMQRY to create multiple reports that are
organized according to your needs for a particular situation. This chapter describes
how to create, change, and convert a query management instance that creates a
report arranged to your needs.

Creating a Query Management Instance

© Copyright IBM Corp. 1991

Obtain access to the query management query function by beginning with a control
language (CL) command or a user application. Once you access the query function,
you can use query management commands to direct query management in creating
an instance. An instance is a DATA set containing the data collected from the data-
base file and the global variable pool that contains the DSQ variables used to define
the query.

Using the query management instance created by the commands issued, build a
printed or displayed report by creating or changing the form in a way that gives you
the needed information. Figure 4-1 illustrates how a query management instance is
created.

CL User
Command Application
SAA
Query / e |
Management ' Query |
Command I
I Management |
l | Instance {
|
Create | |
Query ﬂ Glo_bal :
Management ! 4 \ng(l;llable :
DSQ Variables I :
I

RS3W002-1

Figure 4-1. Creating a Query Management Instance

Exit the query management instance using the same procedure and the EXIT
command. This destroys the instance.

Running a Query Management/400 Query
Use one of the following methods to run a query management query:
¢ Specify the Run Query (RUNQRY) command in a procedure.
* Issue the Start Query Management Query (STRQMQRY) CL command

* Run the query from a user application.

Issue a query management command to access the query management function.
Query management then creates a QMQRY object (with the name you specified) or
changes an existing QMQRY to create the new instance. By using a Structured
Query Language (SQL) statement, query management accesses an 0S/400 database
file and puts the information requested in the QMQRY into the DATA set contained in
the instance.

The DATA set created by running the query remains in existence until another query
is processed or the associated instance is ended by the EXIT command. A different
DATA set is created for each query management instance.

Note: The DATA set is only created if the query is a SELECT statement.

Figure 4-2 illustrates how a query is run using query management.

Query STRQMQRY User
Management CL Command Application
Procedure
SAA
Query /
Management
Command
F———————— -
| |
| Query :
: Management |
i Instance |
| |
a o |
uery |
QMQRY ‘ Management | T DATA {
| |
| 1
Data
SQL
l
08/400
Database
File
RS3W001-1

Figure 4-2. Running a Query Management Query

4-2 AS/400 Query Management/400 Programmer’s Guide

Global Variable Substitution

If you run a query with global variable substitution specified, query management
processes the request in the same manner as described previously, except the
global variable pool defined when the instance was created is searched to resolve
global variables. If the variable specified in the query is not set in the global vari-
able pool, query management sends a message to the display prompting you for the
value to be used in the field specified. Enter a valid value for the prompted field and
the query will be run with the variable value entered at the prompt.

Creating Query Management Reports

Once you have created the DATA set, you can request that a report be printed or
shown at the display station. Use the Create Query Management Form
(CRTQMFORM) command or the Work with Query Management Form
(WRKQMFORM) command to create or change a QMFORM object that puts the data
in the DATA set into a form specific to your needs.

Once the QMFORM and the DATA set are created, use the Display Report display to
show the report on your display station, or use the PRINT command to produce a
printed version of the report data.

Note: Creating a report requires that you have already run a query to create a
DATA set.

Figure 4-3 illustrates how to display or print a report using query management
guidelines.

Query CL User

Management Command Application
Procedure
SAA
Query /
Management
Command
r ———————— -
| |
I Query =
| Management
Query | Instance I
QMFORM | ® Management : }
Data |
DATA |
i |
| |
— I
Printed Displayed
Report Report
RS3W000-1

Figure 4-3. Creating a Query Management Report

Chapter 4. Instance Processing 4-3

importing a Query or Form Object

Use the following methods to start the process of importing a query or form object
for use in creating a query management report:

* Specify the IMPORT command in a procedure.

* Issue the Create Query Management Query (CRTQMQRY) or Create Query Man-
agement Form (CRTQMFORM) CL command.

¢ Import the query or form object from a user application using the IMPORT
command.

Use query management commands to request the data be imported from a source

file member that contains the query or form source to create the specified query or
form.

Exporting a Query or Form Object

Use the following methods to start the process of exporting a query or form object
for use in creating a query management report:

¢ Specify the EXPORT command in a procedure.

¢ Issue the Retrieve Query Management Query (RTVQMQRY) or Retrieve Query
Management Form (RTVQMFORM) CL command.

¢ Export the query or form from a user application using the EXPORT command.

Use query management commands to send the data to a source file member to
contain the query or form information.

Importing and Exporting a Query Management Procedure

The process for importing and exporting query management procedures is the same
as for importing and exporting queries and forms with one exception. A query man-
agement procedure is a source physical file member. An import or export of a pro-
cedure copies the information from one member to another. Therefore, it is not

necessary to import or export a procedure, because it is already in the format
needed to transfer it to another SAA system.

Figure 4-4 on page 4-5 illustrates the process for importing and exporting queries,
forms, and procedures.

4-4 AS/400 Query Management/400 Programmer’s Guide

Query cL User
Management Command Application
Procedure
SAA
Query /
Management
Command
IMPORT IMPORT
Source | Query ‘ ™ amaRy,
File Management QMFORM, or
Member I‘_ ¢ | PROC
EXPORT EXPORT

RS3W003-0

Figure 4-4. Importing and Exporting Query Management Members

Running a Query Management Procedure

Use one of the following methods to start working with procedures in the query man-

agement environment:

e Specify the procedure from inside another procedure using the RUN command.
¢ Issue the Start Query Management Procedure (STRQMPRC) CL command.
e Start the procedure from a user application using the RUN command.

Use query management commands to request the data from a source file member
or another procedure for query management to use in creating a query management
instance. The commands in the procedure are processed using the same instance
as the instance associated with the RUN PROC command.

Chapter 4. Instance Processing

4-5

Query management also allows you to call multiple procedures when creating an
instance using this process. Figure 4-5 illustrates how to run a query management

procedure.
Query STRQMPRC User
F——P Management CL Command Application
Procedure
SAA
Query /
Management
Command
T i
I Query :
. { Management |
aounl:)e File Query | Instance |
ember or I
Query Management | | !
Procedure = {
| |
| |
¢ e |

RS3W004-0

Figure 4-5. Running Query Management Procedures

Using the Save Data As Command

Query management allows you to save the data created in the DATA set of your
instance to a query management table. Use the following methods to start query
management processing when working with the Save Data As command:

* Specify the save operation from a procedure using the SAVE DATA AS
command.

* Issue the Start Query Management Query (STRQMQRY) CL command.

* Start the command from a user application using the SAVE DATA AS command.

Use query management commands to request that the data from the DATA set in an

instance created previously be used to save the data in an 0S/400 database file to a

query management table. You must have processed a RUN QUERY command under
the same instance to create the query management DATA set.

4-6 AS/400 Query Management/400 Programmer’s Guide

Figure 4-6 illustrates how to save the data in a database file to a table using a query
management instance.

Query STRQMQRY User
Management CL Command Application
Procedure
SAA
v /
Query
Management
Command
r ———————— -
| |
I Query {
= Management |
| Instance |
L
! I
|
Query Data | |
Management [¢ I| | DATA :
|
e]
 J
SQL
2
0S/400 Data
Database
File Table

RS3W005-1

Figure 4-6. Saving Data to a Query Management Table

Using SET GLOBAL and GET GLOBAL Commands

Query management allows you to get and change variables in the global variable
pool. Use the GET GLOBAL command to get the value of a query management vari-
able in the previously created instance and provide it to a user program or proce-
dure.

Use the SET GLOBAL command to set or change the value of a query management
variable in the previously created instance from a user program or procedure. Use
the following methods to start query management processing when working with the
GET GLOBAL and SET GLOBAL commands:

* Specify the command from a procedure.
e |ssue the Start Query Management Query (STRQMQRY) CL command.
¢ Start the command from a user application.

Chapter 4. Instance Processing 4-7

Use query management commands to request that the values from the global vari-
able pool in an instance created previously be set from a user program or proce-
dure. The GET GLOBAL process is the same as the SET process, except query
management gets the variable values for a user program in the GET GLOBAL
process.

Figure 4-7 illustrates how query management uses the GET GLOBAL and SET
GLOBAL commands to change or retrieve query management variables.

Query STRQMQRY User
Management CL Command Application
Procedure
SAA
Query / _________ |
Management !- |
Command iuuery i
IManagement;
l | Instance }
|
o GET | }
Query | Variable | |
M
anagement ! Pool i
SET l :
S 1

Figure 4-7. Using GET GLOBAL and SET GLOBAL Commands

4-8 As/400 Query Management/400 Programmer’s Guide

Chapter 5. Using Query Management in HLL Programs

This chapter describes the high-level languages you can use to access the query
management callable interface (Cl). Query management supports the following lan-
guages:

¢ C/400*
¢ COBOL/400*
* RPG/400*

C Language Interface

Access the query management Cl using normal C function calls. The exact
description of each function call is provided in the Cl C communications include file
DSQCOMMC. The communications include file is unique for each operating system.
Query management provides two function calls — DSQCIC and DSQCICE. Use
DSQCIC to run query management commands that do not require access to program
variables. Use DSQCICE to run commands that do require access to program vari-
ables. Use the following commands with the DSQCICE function:

e START
¢ SET GLOBAL
* GET GLOBAL

Specify all other query management commands using the DSQCIC function. For
more information on the C language interface, see the SAA CPI Query Reference
manual.

Example DSQCOMMC

© Copyright IBM Corp. 1991

Figure 5-1 on page 5-2 shows the AS/400 version of the query management Cl C
communications macro.

/***/

/*
/* NAME: dsqcommc.h
/*
/* MODULE-TYPE: IBM C/400 Query Management Interface include file
/*
/* PROCESSOR: C
/*
/* DESCRIPTION:
/* This include file contains the declarations needed
/* by a C application program for interfacing
/* with the query management callable interface.
/* query management is the AS/400 implementation of the
/* Systems Application Architecture Query Callable
/* Programming Interface.
/*
/* Copyright: 5728-SS1 (C) COPYRIGHT IBM CORP. 1989
*

/***/

/***/

/* Callable Interface Constants and Structures
/***/

*

/* return code values for DSQ_RETURN_CODE */
#define DSQ_SUCCESS 0@ /* successful running of the request */
#define DSQ_WARNING 4 /* normal completion with warnings */
#define DSQ_FAILURE 8 /* command did not process correctly */
#define DSQ_SEVERE 16 /* severe error; SAA Query session */
/* ended. */
/* Variable data types */
#define DSQ_VARIABLE_CHAR "CHAR" /* unsigned character data type */
#define DSQ_VARIABLE_FINT "FINT" /* Tong integer type */
/* Cancel indicator */
#define DSQ_CANCEL_YES "1t /* Yes it was canceled. */
#define DSQ_CANCEL_NO "o" /* No, it was not canceled. */
/* Derived query/form indicator *
#define DSQ_DERIVED_YES "1" /* Yes it was derived from QRYDFN*/
#define DSQ_DERIVED_NO "" /* No, it was not derived */
/* Yes/No indicator. This indicator can be used to test the values */
/* returned for the following global variables: */
/* DSQCATTN - Last command cancel indicator. */
/* DSQAROWC - Current data completed indicator. */
/* */
#define DSQ_YES " /* Yes */
#define DSQ_NO " /* No */
/* misc defines */
#define DSQ_TRUE 1 /* indicates TRUE */
#define DSQ_FALSE 0 /* indicates FALSE */
#define DSQ_MATCH 0 /* match indicator */

Figure 5-1 (Part 1 of 2). Example DSQCOMMC

5-2 AS/400 Query Management/400 Programmer’s Guide

/* define the Communication Area structure */
struct dsgcomm

{

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

unsigned

unsigned

unsigned

}s

Tong dsq_return_code; /* function return code */
Tong dsq_instance_id; /* instance id for this session */
char dsq_reservel[44]; /* reserved space - */

/* not for application use */

char dsq_message_id[8]; /* completion message id*/
char dsq_q_message_id[8]; /* query message id*/
char dsq_start_parm_error[8]; /* start parm*/
char dsq_cancel_ind[1]; /* command canceled by */

/* Control-Break (l=yes,0=no)*/

char dsq_reserve2[17]; /* reserved space - */

/*not for application use

char dsq_query_derived[1]; /* query used was */

*/

/*derived from AS/400 *QRYDFN */

char dsq_form_derived[1];/*form used was derived */

/* from AS/400 *QRYDFN

int dsq_delete_env; /* flag used by QM to
/* control the QM

/* environment.

char dsq_reserve3[924]; /* Reserve area 3 */

/* application use

*/
*/
*/
*/

*/

/***/

/* Callable Interface External Function/Routine Definition
/***/

/* pragma definitions */
#define dsqcice DSQCICE
#define dsqcic DSQCIC
#pragma 1inkage(DSQCIC, 0S)
#pragma linkage(DSQCICE, 0S)

/* prototype for DSQCICE */
extern void dsqcice (

struct dsqgcomm *, /* Communication Area
signed long *, /* command length
char *, /* command

signed long *, /* number of parms
signed Tong *, /* keyword lengths
char *, /* keywords

signed long *, /* data lengths

void *, /* data

char *); /* data value type

/* prototype for DSQCIC */
extern void dsqcic (

Figure 5-1

struct dsqcomm *, /* Communication Area
signed long *, /* command Tength
char *); /* command

(Part 2 of 2). Example DSQCOMMC

Chapter 5. Using Query Management in HLL Programs

*

5-3

COBOL Language Iinterface

Use normal COBOL function calls to access the query management Cl. The exact
description of each function call is provided in the query management COBOL com-
munications macro DSQCOMMB. The communications macro is unique for each
operating system. Query management provides a function called DSQCIB, which is
used to run all query management commands. The parameters passed on the call
to DSQCIB determine whether program variables are being passed. Program vari-
ables must be passed on the following query management commands:

¢ START
¢ SET GLOBAL
* GET GLOBAL

No other query management commands specify program variables. For more infor-
mation on the COBOL language interface, see the SAA CPI Query Reference
manual.

DSQCIB Function Syntax

The following command string is an example of using the DSQCIB function syntax:
CALL DSQCIR USING DSQCOMM, CMDLTH, CMDSTR.

where:
* DSQCOMM is the structure DSQCOMM.

° CMDLTH is the length of the command string CMDSTR. The length is specified
as an integer PIC 9(8) variable.

° CMDSTR is the SAA Query command to run. The command string is specified as
a character string of the length specified by CMDLTH.

DSQCIB Extended Function Syntax

The following command string is an example of using the DSQCIB extended function
syntax:

CALL DSQCIB USING
DSQCOMM CMDLTH CMDSTR
PNUM KLTH KWORD VLTH VALUE VTYPE.

where:
® DSQCOMM is the structure DSQCOMM.

® CMDLTH is the length of the command string CMDSTR. The length is specified
as an integer PIC 9(8) variable.

¢ CMDSTR is the SAA Query command to run. The command string is specified as
a character string of the length specified by CMDLTH.

* PNUM is the number of command keywords. PNUM is specified as an integer
PIC 9(8) variable.

° KLTH is the length of each specified keyword. The length of the keyword or
keywords is specified as an integer PIC 9(8) variable or variable array.

* KWORD is the query management keyword or keywords.

The keyword string is specified as a character or a structure of characters whose
length is the same as specified by KLTH. You can use an array of characters,
provided all of the characters are of the same length.

5-4 As/400 Query Management/400 Programmer’s Guide

e VLTH is the length of each value associated with the keyword.

The length of the associated values is specified as an integer PIC 9(8) variable or
variable array.

e VALUE is the value associated with each keyword.

The value string is specified as a character or a structure of characters or an
integer PIC 9(8) variable or variable array. The type is specified in the VTYPE
parameter.

* VTYPE indicates the query management data type of the value string VALUE.

The value string contains one of the following values that is provided in the
query management communications macro:

— DSQ-VARIABLE-CHAR indicates that value is character.
— DSQ-VARIABLE-FINT indicates that value is an integer PIC 9(8).

Example DSQCOMMB

Figure 5-2 is an example of the SAA Query Cl COBOL communications macro that
has been tailored to fit the AS/400 environment.

T T T L T L Y L e T T L e S e s S n

NAME: DSQCOMMB

MODULE-TYPE: IBM COBOL/400 Query Management Interface
include file

PROCESSOR: COBOL

DESCRIPTION:
This include file contains the declarations needed
by a COBOL/400 application program for interfacing
with the query management callable interface.
query management is the AS/400 implementation of the
Systems Application Architecture Query Callable
Programming Interface.

Copyright: 5728-SS1 (C) COPYRIGHT IBM CORP. 1989

* % ok ok % ok ¥ F %k X X X X F F F X X
* % % ok % ok ¥ % %k ok ok X ¥ X F X X *

E T T X e e S e L R s R st s

* Structure declare for communications area
01 DSQCOMM.

03 DSQ-RETURN-CODE PIC 9(8) USAGE IS BINARY VALUE 0.
* * Function return code *
03 DSQ-INSTANCE-ID PIC 9(8) USAGE IS BINARY VALUE 0.
* * Identifier from START cmd *
03 DSQ-RESERVE1L PIC X(44).
* * Reserved area *
03 DSQ-MESSAGE-ID PIC X(8).
* * Completion message id *

Figure 5-2 (Part 1 of 3). Example DSQCOMMB

Chapter 5. Using Query Management in HLL Programs ~ 5-5

03 DSQ-Q-MESSAGE-ID PIC X(8).

* * Query message ID *
03 DSQ-START-PARM-ERROR PIC X(8).

* * START parameter in error *
03 DSQ-CANCEL-IND PIC X(1).

* 1 = Command canceled

* * 0 = Command not canceled *
03 DSQ-RESERVE2 PIC X(17).

* * Reserved space -- not for

*

* application use
03 DSQ-QUERY-DERIVED PIC X(1).
*

O ¥ * * *

* 1 = Query was derived from *
* * AS/400 QRYDFN *
* * 0 = Query was not derived *
* * from AS/400 QRYDFN *
03 DSQ-FORM-DERIVED PIC X(1).
* * 1 = Form was derived from
* * AS/400 QRYDFN
* * 0 = Form was not derived
* * from AS/400 QRYDFN
03 DSQ-DELETE-ENV PIC 9(8) USAGE IS BINARY VALUE
* * Flag used to delete env.
03 DSQ-RESERVE3 PIC X(924).
* Reserved space -- not for *
* application use *
* Return code values for DSQ-RETURN-CODE
01 DSQ-SUCCESS PIC 9(8) USAGE IS BINARY VALUE 0.
01 DSQ-WARNING PIC 9(8) USAGE IS BINARY VALUE 4.
01 DSQ-FAILURE PIC 9(8) USAGE IS BINARY VALUE 8
01 DSQ-SEVERE PIC 9(8) USAGE IS BINARY VALUE 1
* Callable Interface program name
01 DSQCIB PIC X(7) VALUE "QQXMAIN".
* Values for variable type on CALL parameter
01 DSQ-VARIABLE-CHAR PIC X(4) VALUE "CHAR".
01 DSQ-VARIABLE-FINT PIC X(4) VALUE "FINT".
* Values for query/form derived field in communications area
01 DSQ-DERIVED-NO PIC X(1) VALUE "0".
01 DSQ-DERIVED-YES PIC X(1) VALUE "1".

Figure 5-2 (Part 2 of 3). Example DSQCOMMB

5-6 AS/400 Query Management/400 Programmer’s Guide

* Values for the cancel indicator field in communications area

01 DSQ-CANCEL-YES PIC X(1) VALUE "1".

01 DSQ-CANCEL-NO PIC X(1) VALUE "o".
* Yes/No indicator. This indicator can be used
* to test the values
* returned for the following global variables:
* DSQCATTN - Last command cancel indicator.
* DSQAROWC - Current data completed indicator.
*

01 DSQ-YES PIC X(1) VALUE "1".

01 DSQ-NO PIC X(1) VALUE "@".

Figure 5-2 (Part 3 of 3). Example DSQCOMMB

RPG Language Interface

Access the query management Cl using normal RPG function calls. The exact
description of each function call is provided in the query management RPG commu-
nications include member DSQCOM. Query management provides a function called
DSQCIR that is used to run all query management commands. The parameters that
are passed on the call to DSQCIR determine whether program variables are being
passed. Program variables must be passed on the following query management
commands:

¢ START
o SET GLOBAL
e GET GLOBAL

No other query management commands specify program variables.

DSQCIR Function Syntax

The following command string is an example of using the DSQCIR function syntax:

C CALL DSQCIR

C PARM DSQCOM

C PARM CMDLTH

C PARM CMDSTR
where:

¢ DSQCOM is the structure DSQCOM.

e CMDLTH is the length of the command string CMDSTR. The length is specified
as a 4-byte binary field.)

o CMDSTR is the SAA Query command to process. The command string is speci-
fied as a character string of the length specified by CMDLTH.

Chapter 5. Using Query Management in HLL Programs ~ 5-7

DSQCIR Extended Function Syntax

The following command string is an example of using the DSQCIR extended function

syntax:
C CALL DSQCIR
C PARM DSQCOM
C PARM CMDLTH
C PARM CMDSTR
C PARM 1 PNUM
C PARM KLTH -
C PARM KWORD
C PARM VLTH
C PARM VALUE
C PARM VTYPE
where:

DSQCOM is the structure DSQCOM.

CMDLTH is the length of the command string CMDSTR. The length is specified
as a 4-byte binary field.

CMDSTR is the SAA Query command to run. The command string is specified as
a character string of the length specified by CMDLTH.

PNUM is the number of command keywords. PNUM is specified as a 4-byte
binary field.

KLTH is the length of each specified keyword. The length of the keyword or
keywords is specified as a 4-byte binary field.

KWORD is the query management keyword or keywords.

The keyword string is specified as a character or a structure of characters whose
length is the same as specified by KLTH. An array of characters may be used,
provided all of the characters are of the same length.

VLTH is the length of each value associated with the keyword. The iength of the
associated values is specified as a 4-byte binary field.

VALUE is the value associated with each keyword.

The value string is specified as a character or a structure of characters or a
4-byte binary field. The type is specified in the VTYPE parameter.

VTYPE indicates the query management data type of the value string VALUE.

The value string contains one of the following values that is provided in the
query management communications include member:

— DSQVCH indicates that value is character.
— DSQVIN indicates that value is an integer (4-byte binary).

5-8 As/400 Query Management/400 Programmer’s Guide

Interface Communications Area (DSQCOM)
The query management interface communications area is part of the communi-
cations include member DSQCOM. The interface communications area is described
as a structure named DSQCOM.

The interface communications area DSQCOM contains the information shown in
Figure 5-3. This information must not be altered by the calling program.

Figure 5-3. DSQCOM Programming Information

Variable Type Length (bytes) Description

DSQRET Binary 4 bytes Integer that indicates the status
of query management proc-
essing after a command is run.

DSQINS Binary 4 bytes Identifier that is established by
query management when proc-
essing the START command.

DSQRES Character 44 bytes Reserved for future use.
DSQMSG Character 8 bytes Completion message ID.
DSQQMG Character 8 bytes Query message ID.

DSQSPE Character 8 bytes Parameter in error when
START failed due to a param-
eter error.

DSQCNL Character 1 byte) Command cancel indicator;

indicates whether the user had
canceled command processing
while query management was
running a command:

DSQCLY “VALUE 1”7
DSQCLN "VALUE 0”

DSQRS2 Character 17 bytes Reserved for future use.

DSQQDR Character 1 byte Query was derived from a
Query/400 QRYDFN.

DSQDRY “VALUE 17
DSQDRN ”"VALUE 0”

DSQFDR Character 1 byte Form was derived from a
Query/400 QRYDFN.

DSQDRY “VALUE 1”
DSQDRN "VALUE 0”

DSQRS3 Character 156 bytes Reserved for future use.
DSQRS4 Character 256 bytes Reserved for future use.
DSQRS5 Character 256 bytes Reserved for future use.
DSQRS6 Character 256 bytes Reserved for future use.

Chapter 5. Using Query Management in HLL Programs 5-9

Exampie DSQCOMMR

Figure 5-4 is an example of the query management CI RPG communications include
member. This version of the communications include member has been tailored for
the AS/400 system environment.

I***

I* *
I* NAME: DSQCOMMR *
I* *
I* MODULE-TYPE: IBM RPG/400 Query Management Include File *
I* *
I* PROCESSOR: RPG *
I* *
I* DESCRIPTION: *
I* This include file contains the declarations needed *
I* by an RPG/400 application program for interfacing *
I* with the query management callable interface. *
I* query management is the AS/400 implementation of the *
I* Systems Application Architecture Query Callable *
I* Programming Interface. *
I* *
I* Copyright: 5728-SS1 (C) COPYRIGHT IBM CORP. 1989 *
I* *

I***
I***

I* QUERY INTERFACE INCLUDE *
I* *
I* DSQCOM Definition, contains QUERY interface variables: *
I* *
I* DSQRET - Status of QUERY processing *
I* DSQINS - SAA QUERY identifier *
I* DSQRS1 - Reserved *
I* DSQMSG - Completion message-ID *
I* DSQQMG - QUERY message ID *
I* DSQSPE - START fail parameter error *
I* DSQCNL - Command cancel indicator *
I* DSQQDR - Query was derived from AS/400 QRYDFN *
I* DSQFDR - Form was derived from AS/400 QRYDFN *
I* DSQDEN - Environment deletion indicator *
I* DSQRS?2 - Reserved *
I* DSQRS3 - Reserved *
I* DSQRS4 - Reserved *
I* DSQRS5 - Reserved *
I* DSQRS6 - Reserved *
I* *
I***
IDSQCOM DS

Figure 5-4 (Part 1 of 3). Example DSQCOMMR

5-10 AS/400 Query Management/400 Programmer’s Guide

b bk f bl el b bl bl bt bl bl bl et b e

I*
I*
I*
I*
I*

I*
I
I
I
I
I*
I*
I*
I*
I*
I
I
I*
I*
I*
I*
1*
I
I
I*
I*
I*
I*
I*
I*
I
I
I*

B 1
B 5
9

53

61

69

77

78

95

96

97
101
357
613

40DSQRET
8ODSQINS

52
60
68
76
77
94
95
96
100
356
612
868

8691024

DSQRET - DSQ return code meanings

= 00 O

6

SUCCESS --
WARNING --
FAILURE --
SEVERE --

OO0

DSQCNL - DSQ cancel indicator meanings

Ill
I0|

DSQQDR/DSQFDR - DSQ QRYDFN derivation indicator meanings

Ill
IOI

DSQYES/DSQNO - DSQ constants for the values returned

for the following global variables:
DSQCATTN - Last command cancel indicator.
DSQAROWC - Current data completed indicator.

Ill
IOI

CANCEL YES --
CANCEL NO --

c
C
DERIVED YES --
DERIVED NO --

C
C

C
c

Figure 5-4 (Part 2 of 3). Example DSQCOMMR

Chapter 5. Using Query Management in HLL Programs

DSQRS1
DSQMsG
DSQQMG
DSQSPE
DSQCNL
DSQRS2
DSQQDR
DSQFDR
DSQDEN
DSQRS3
DSQRS4
DSQRS5
DSQRS6

value 0
value 4
value 8
value 16

DSQSuC
DSQWAR
DSQFAI
DSQSEV

value '1’
value '0’

DSQCLY
DSQCLN

value '1'
value '0'

DSQDRY
DSQDRN

DSQYES
DSQNO

5-11

I* DSQCIR - Interface program call name definition

I*

I 'QQXMAIN' C DSQCIR
I*

I* DSQVCH - contains constant value 'CHAR'

I* DSQVIN - contains constant value 'FINT'

I*

I 'CHAR' C DSQVCH
I 'FINT' C DSQVIN
I*

I* END OF DSQCOM QUERY INCLUDE

I**

Figure 5-4 (Part 3 of 3). Example DSQCOMMR

5-12 As/400 Query Management/400 Programmer’s Guide

Chapter 6. Subprogram Use and CPI Handling

You may wish to use subprograms to access the query management callable inter-
face (Cl). Subprograms relieve you of most of the data manipulation necessary to
access the Cl. This chapter describes subprograms and how to use them in han-
dling queries.

Subprogram Use

This section describes the listings for seven subprograms that represent the more
common functions performed. Create different subprograms if you find there are
other commonly used functions in your particular environment.

When using the subprograms, consider the following issues:

¢ |f the calling program calls the subprogram only once (or infrequently), end the
subprogram when returning to the calling program. Refer to RPG/400* User’s
Guide for more details on calling other programs.

e Once the Cl is started, an instance identifier is allocated. Therefore, the data
structure DSQCOM is passed from program to program. You must pass this
instance identifier to the Cl for each access under that session.

e |If the application programs using these subprograms are run on an AS/400
system different from the one that created the subprograms, object code ver-
sions of these subprograms need to be on the AS/400 system running the pro-
grams.

e |f the application programs using these subprograms are run on a non-AS/400
system, object code versions of programs that perform the same function must
be created on that system.

Note: The code described in this chapter is written in RPG/400 language and
does not necessarily compile on non-AS/400 systems.

¢ The code provided in this chapter is written in RPG, but you can develop similar
functions in other programming languages. You can also access the RPG/400
subprograms, once compiled, from a COBOL program.

Description of Subprograms

© Copyright IBM Corp. 1991

The following sections describe how you can use subprograms to accomplish the
commonly used query management functions. Following each description is the
example subprogram created to accomplish the query management task.

START Subprogram

The values for the keywords DSQSMODE, DSQSCMD, DSQSRUN, and DSQSNAME
are passed to this program as a string of 132 characters. The first 33 characters
represent the DSQSMODE keyword value, the next 33 characters represent the
DSQSCMD keyword value, the next 33 the DSQSRUN keyword value, and the last 33
the DSQSNAME keyword value. Left-justify the keyword values you type. If a
keyword value is not used, it still must be passed, but as a string of 33 blank charac-
ters.

The START subprogram reads the passed keyword values string, tests for blank

values, and calculates the lengths of the values. It also strings together the start
command, keywords, and keyword values with the necessary lengths and calls the

6-1

programmable interface. The interface is started and the START subprogram is
ended with control returned to the calling program.

R R X L T T X R R R R R R R R R R PR PR R Oy

START COMMAND CPI QUERY INTERFACE HANDLER

1) Include member DSQCOMMR contains the communications

area to be passed to the query management interface.
This program handles the START CPI QM interface

command. It reads the DSQ keywords information to be
processed, reformats it, then passes it to the interface
The keyword information is passed to this program in the
form of 4 values which are the 4 keyword values to be
passed to query management. This program calculates

the Tength of each keyword name and keyword value and
strings the necessary information into arrays for
passing to the query management callable interface.

N
~

(%)
~—

¥ ok ok o X % % ok ok ok %k F * ¥ F* *
%k ok kX X X X X X Ok Ok F * ¥ *

e Ly Dk R R R R R L L L R RSO

H
*
E LTH 1 4 9 0 KEY 8 lengths of k/wds
E STA 4 33 k/wd vals passed
E KEL 4 90 keyword lengths
E KEN 30 1 keyword names
E VAL 4 990 value lengths
E VAV 81 1 value values
E TST 33 1 test value length
*
I DS
I B 1 40BIN1
I B 5 80BIN2
I B 9 240KEL
I B 25 400VAL

I/COPY BPLIB/QRPGSRC,DSQCOMMR
*

* receive the passed start command keyword values:
*

C *ENTRY PLIST
C PARM DSQCOM comms area
C PARM STA keywords passed

*

* prepare keyword name lengths, names, value lengths, values
*

C Z-ADD1 Y 20 initialize
C Z-ADD1 W 20 counters

C Z-ADDO KEL and numeric
C Z-ADDO VAL arrays

Figure 6-1 (Part 1 of 2). Example START Subprogram

6-2 As/00 Query Management/400 Programmer’s Guide

C) DOUEQ4 look at each
C ADD 1 v 10 passed keyword
C STA,V COMP *BLANKS 50value & process
C *IN50 IFEQ '0' if not blank
*
C ADD 1 X 10 keyword name
C MOVE LTH,V KEL,X lengths array
*
C ' LOKUPKEN, Y 60 string keyword
C MOVE KEY,V WORK1 8 name into
C MOVEAWORK1 KEN,Y names array
*
C MOVEASTA,V ST find keyword
C Z-ADD1 VA 20 value length
C ' LOKUPTST,Z 61 and move
C 61 SUB 1 yA to keyword
C N61 Z-ADD33 z value lengths
C Z-ADDZ VAL, X array
*
C v LOKUPVAV W 62 string keyword
C MOVE STA,V WORK2 33 value into
C MOVEAWORK2 VAV, W values array
*
C END
C END
*
* start the query interface session:
*
C CALL DSQCIR
C PARM DSQCOM comms area
C PARM 5 BIN1 command length
C PARM 'START' CHAR1 5 START
C PARM X BIN2 # keywords
C PARM KEL keyword lengths
C PARM KEN keyword names
C PARM VAL value lengths
C PARM VAV values
C PARM DSQVCH CHARZ 4 CHAR
*
C MOVE '1' *INLR
*
** start DSQ keyword name lengths and names loaded as compile time array
000000008DSQSMODE
000000007DSQSCMD
000000007DSQSRUN
000000008DSQSNAME

Figure 6-1 (Part 2 of 2). Example START Subprogram

SETC Subprogram

The SETC subprogram performs the SET GLOBAL variable function for a character
value to be passed to the Cl. The SETC subprogram handles one variable at a time.
The variable name and value are passed to this program as two separate parame-
ters. The name can be up to 10 characters long, and the value up to 20 characters
long.

Chapter 6. Subprogram Use and CPl Handling 6-3

This subprogram calculates the necessary lengths, strings the information together,
and calis the programmable interface. The variable is set as CHAR data type, and
control then returns to the calling program.

Note: The SETC subprogram is not ended because it may be called a number of
times in the session.

B e T T L T L L T L T T

SET GLOBAL COMMAND (CHARACTER VARIABLE)
CPI QUERY INTERFACE HANDLER

1) Include member DSQCOMMR contains the communications
area to be passed to the Query Interface.

2) This program handles the SET GLOBAL Query Interface
command for variable values to be passed to the
interface as CHAR type.

3) It reads the variable name and value, calculates the
length of each, and passes the information to Query
Management.

4) The program handles one variable at a time, the length
of the variable name can be a maximum of 10 characters
and the length of the variable value can be a maximum
of 20 characters.

* % ok ok ok ok A A K % Sk ok * * ¥ ¥ X ¥
* %k %k X ¥ F k¥ ¥

* % X ¥ % ¥ ¥ X

B R R T T L L T T T T Yy

H
*
E TNL 10 1 test name length
E TVL 20 1 test value length
*
I 'SET GLOBAL' C CMD
*
I DS
I B 1 40BIN1
I B 5 80BIN2
I B 9 120BIN3
I B 13 160BIN4

1/COPY BPLIB/QRPGSRC,DSQCOMMR
*

* receive the passed variable name and value:
*

C *ENTRY PLIST

C PARM DSQCOM comms area

C PARM VARNAM 10 variable name
C PARM VARVAL 20 variable value

*

* calculate the variable name length and variable value length:

C MOVEAVARNAM TNL

C Z-ADD1 X 20 X = last
C t LOKUPTNL, X 60 non blank
C 60 SuB 1 X character
C N60 Z-ADD10 X in name

Figure 6-2 (Part 1 of 2). Example SETC Subprogram

6-4 As/400 Query Management/400 Programmer’s Guide

C Z-ADD20 Y 20 if value
C VARVAL IFNE *BLANKS blank pass
C MOVEAVARVAL TVL 20 blanks
C AGAIN TAG

C v COMP TVL,Y 61 Y = last
C 61 SuB 1 Y non blank
C 61 GOTO AGAIN character
C END in value

*

* set the global variables:
*

C CALL DSQCIR

C PARM DSQCOM comms area

C PARM 10 BIN1 command length
C PARM CMD CHAR1 10 SET GLOBAL

C PARM 1 BIN2 # variables

C PARM X BIN3 var name length
C PARM VARNAM variable name

C PARM Y BIN4 var value Ingth
C PARM VARVAL variable value
C PARM DSQVCH CHAR2 4 CHAR

*

C RETRN

Figure 6-2 (Part 2 of 2). Example SETC Subprogram

SETA Subprogram

The SETA subprogram performs the SET GLOBAL variable function for a character
value to be enclosed in apostrophes and then passed to the Cl. This function is
required when creating a query that compares a data item to a constant character
value (DEPT = 'ACCT’). The variable name and value are passed to this program
as two separate parameters. The name can be up to 10 characters long and the
value up to 20 characters long.

This program encloses the value in apostrophes, calculates the necessary lengths,
strings the information together, and calls the programmable interface. The vari-
able is set as CHAR data type, and control then returns to the calling program.

Note: The SETA program is not ended because it may be called a number of times
in the session.

Chapter 6. Subprogram Use and CPl Handling 6-5

R S L T T e e e S s

SET GLOBAL COMMAND (APOSTROPHE ENCLOSED CHARACTER
VARIABLE) CPI QUERY INTERFACE HANDLER

1) Include member DSQCOMMR contains the communications
area to be passed to the query management interface.

2) This program handles the SET GLOBAL interface
command for variable values to be enclosed in
apostrophes and passed to the interface as CHAR type.

3) It reads the variable name and value, calculates the
length of each, encloses the value in apostrophes,
and passes the information to query management.

4) The program handles one variable at a time, the length
of the variable name can be a maximum of 10 characters
and the length of the variable value can be a maximum
of 20 characters.

Ok %k %k ok X X ¥ ¥ Sk ok F F X X * ¥ *
* 0% X %k Ok Ok K X X % Ok X K F F ¥ ¥ %

Fkhkdhkhdhhhhhhhrhhhhhhbhhhhhhhkkhhkhhkhhkhhkhdhdhdhhhhdkhrddddddhdkdded

H
*
E TNL 10 1 test name length
E TVL 22 1 test value length
*
I 'SET GLOBAL' C CMD
*
I DS
I B 1 40BINl
I B 5 80BIN2
I B 9 120BIN3
I B 13 160BIN4

1/COPY BPLIB/QRPGSRC,DSQCOMMR
*

* receive the passed variable name and value:
*

C *ENTRY PLIST

C PARM DSQCOM comms area

C PARM VARNAM 10 variable name
C PARM VARVAL 20 variable value

*

* calculate the variable name length and variable value length:

C MOVEAVARNAM TNL

C Z-ADD1 X 20 X = last
C 't LOKUPTNL, X 60 non blank
C 60 SUB 1 X character
C N60 Z-ADD10 X in name

Figure 6-3 (Part 1 of 2). Example SETA Subprogram

6-6 Asr400 Query Management/400 Programmer’s Guide

C MOVE *''! TVL,1 set up first
C MOVEAVARVAL TVL,2 apostrophe

C Z-ADD21 Y 20

C AGAIN TAG Y = last

C v COMP TVL,Y 61 blank

C 61 SUB 1 Y character

C 61 GOTO AGAIN

C ADD 1 Y set up last
C

MOVE ''"’ TVL,Y apostrophe

*

* set the global variables:
*

C CALL DSQCIR

C PARM DSQCOM comms area

C PARM 10 BIN1 command length
C PARM CMD CHAR1 10 SET GLOBAL

C PARM 1 BIN2 # variables

C PARM X BIN3 var name length
C PARM VARNAM variable name
C PARM Y BIN4 var value Ingth
C PARM TVL variable value
C PARM DSQVCH CHAR2 4 CHAR

*

C RETRN

Figure 6-3 (Part 2 of 2). Example SETA Subprogram

SETN Subprogram

The SETN subprogram performs the SET GLOBAL variable function for a numeric
value (nonbinary) to have a decimal point and trailing sign inserted and then passed
to the Cl. This function is required when creating a query that compares a numeric
data item to a constant value (AMOUNT = 525.30-).

The variable name, the variable value, and the number of decimal positions are
passed to this program as three separate parameters. The name can be up to 10
characters long, the value must be 15 numeric digits long, and the number of
decimal places 2 numeric digits long. The value and decimal positions must be
passed as standard numeric data (do not left-justify before passing). The subpro-
gram inserts a decimal point if specified, adds a minus sign if the number is nega-
tive, calculates the necessary lengths, strings the information together, and calls the
programmable interface. The variable is set as CHAR data type, and control returns
to the calling program.

Note: The SETN subprogram is not ended because it may be called a number of
times in the session.

Chapter 6. Subprogram Use and CPl Handling 6-7

dhkkhkkkkhkkhhhhkhkhhhdhhhhhhhhkkkhdkdhhkhhhhhkhkdhhhhkhhhhhhhkdhkhhkx

2)

3)

to query management.
4)

%k Kk Sk ¥k X F % ok %k A F X ¥ F ¥ oF

SET GLOBAL COMMAND (NUMERIC - NON BINARY INTEGER)
CPI QUERY INTERFACE HANDLER

1) Include member DSQCOMMR contains the communications
area to be passed to the query management interface.
This program handles the SET GLOBAL interface

command for variable values to be passed to the
interface as numeric data CHAR type.
It reads the variable name and value, calculates the

length of each, inserts the decimal point and leading
negative sign (if required) and passes the information

The program handles one variable at a time, the length
of the variable name can be a maximum of 10 characters
and the Tength of the variable value can be a maximum
of 15 numeric digits (plus sign and decimal point).

ok kX Ok ¥ X kX ok %k X F Ok F F * * ¥

kkkkhkhkhkhhhhhkkhhkhhkhhhhhkkhhkhhkhhkhhkhhhhkhhhhhkhhkhkhkhhkhkhhkhkhkhkkrsx

H

*

E TNL 10 1

E TVL 17 1

*

I 'SET GLOBAL' c CMD
*

I DS

I B 1 40BINl
I B 5 8OBIN2
I B 9 120BIN3
I B 13 160BIN4
I/COPY BPLIB/QRPGSRC,DSQCOMMR

*

* receive the passed variable name and value:

*
c *ENTRY PLIST
c PARM DSQCOM
c PARM VARNAM 10
c PARM VARVAL 150
C PARM VARDEC 20

*

* calculate the variable name length:

*

c MOVEAVARNAM TNL
c Z-ADD1 X 20
c Pt LOKUPTNL, X

C 60 SuB 1 X
C N60 Z-ADD10 X

Figure 6-4 (Part 1 of 2). Example SETN Subprogram

6-8 Asr400 Query Management/400 Programmer’s Guide

60

test name length
variable value

comms area
variable name

variable value
decimal places

X = last
non blank
character
in name

*

* set up the variable with decimal point and leading minus sign:

*

C MOVE *BLANKS TVL Clear array
C MOVE VARVAL VARCHA 15 Setup as alpha
C VARVAL COoMP 0O 61 Negative value
C 61 MLLZO'8' VARCHA so strip sign
C*
C VARDEC IFEQ O * Processing
C MOVEAVARCHA TVL,3 * if value
C 61 MOVE '-' TVL,2 * has no
C GOTO PASS * decimals
C END *
C*
C MOVEAVARCHA TVL,2 * Processing
C 61 MOVE '-' TVL,1 * if value
C Z-ADD16 Y 20 * has
C Z-ADD17 Z 20 * decimals
C AGAIN TAG *
C MOVE TVL,Y TVL,Z * Move each
C SuB 1 VARDEC * array
C VARDEC IFNE © * position
C SUB 1 Y * over one
C SuB 1 z * place until
C GOTO AGAIN * decimal
C END * Tocation
C MOVE '.' TVL,Y * is reached
C*
C PASS TAG
*
* set the Global Variables:
*
C CALL DSQCIR
C PARM DSQCOM comms area
C PARM 10 BIN1 command length
C PARM CMD CHARL 10 SET GLOBAL
C PARM 1 BIN2 # variables
C PARM X BIN3 var name length
C PARM VARNAM variable name
C PARM 17 BIN4 var value Ingth
C PARM TVL variable value
C PARM DSQVCH CHAR2 4 CHAR
*
C RETRN

Figure 6-4 (Part 2 of 2). Example SETN Subprogram

RUNQ Subprogram

The RUNQ subprogram activates the RUN QUERY interface. The query name and
form name are passed to the program as a string of 42 characters. The first 21 char-
acters constitute the query name, and the last 21 characters are the form name.

The query name and form name must be left-justified. If the form is not being used,
positions 22 to 42 of the string must still be passed, but as blank characters.

The RUNQ subprogram reads the passed query and form names, tests for blank
forms, calculates lengths, formats the RUN QUERY command, and calls the pro-

Chapter 6. Subprogram Use and CPI Handling 6-9

grammable interface. After the query is run, the RUNQ subprogram returns control
to its calling program.

Note: The RUNQ subprogram is not ended because it may be called a number of
times in the session.

khkkhkhkhhkhhhhhhhhhhkhhhhhhhhhhhkkhhhhhkdhhhkhhhkhkhhhhhhhhhkhhhkhkhk

RUN QUERY COMMAND CPI QUERY INTERFACE HANDLER

1) Include member DSQCOMMR contains the communications
area to be passed to the query management interface.

2) This program handles the RUN QUERY interface command.
It reads the passed query name and form information,
reformats it, then passes the information to query
management.

* % ok ¥ ¥ ¥ Ok X X X X
* % % Sk %k F X ¥ F X F

dkkkhkkhkhkkkkhkkhkhhhhhkhhkhhhkhhkhkhhhkdkhhhhkhkhhkhhhhkhhkhkhkkk

E VAL 59 1 value to pass

IRUNQ DS

I 1 21 QNAM
I 22 42 FNAM
I DS

I B 1 40BIN
I1/COPY BPLIB/QRPGSRC,DSQCOMMR

*

* receive the passed run query command information:
*

C *ENTRY PLIST
C PARM DSQCOM comms area
C PARM RUNQ query and form

*

* prepare the run query command:
*

C MOVEA'RUN' VAL Set up RUN

C MOVEA'QUERY' VAL,5 QUERY and

C MOVEAQNAM VAL,11 Query name

C Z-ADD12 X 20 Set array index

Figure 6-5 (Part 1 of 2). Example RUNQ Subprogram

6-10 AS/400 Query Management/400 Programmer’s Guide

c
c
C
C
C
C
C
*
C
C 61
C Nel

*

FNAM

[}

IFNE *BLANKS
LOKUPVAL, X
ADD 1

MOVEA' (FORM="
LOKUPVAL,X
MOVEAFNAM

END

LOKUPVAL, X
SUB 1
Z-ADD59

* process the run query command:

*

OOO0

*

c

RUNP Subprogram

The RUNP subprogram activates the RUN PROC interface. The procedure name is
passed to the program as a string of 33 characters. The procedure name must be
left-justified. The RUNP subprogram reads the passed procedure name, calculates
lengths, formats the RUN PROC command, and calls the programmable interface.
After the procedure is run, the RUNP subprogram returns control to the calling
program.

CALL DSQCIR
PARM

PARM X

PARM

RETRN

X
VAL, X

VAL,X

>

DSQCOM
BIN1
VAL

Figure 6-5 (Part 2 of 2). Example RUNQ Subprogram

Only if form
60Find next blank
leave a space &
insert (FORM=
60Find next blank
form name

61Find last blank
Last non blank
No blanks left

comms area
command length
command

Note: The RUNP subprogram is not ended because it may be called a number of
times in the session.

Chapter 6. Subprogram Use and CPl Handling 6-11

B e L Y T L T T T e T

RUN PROC COMMAND CPI QUERY INTERFACE HANDLER

1) Include member DSQCOMMR contains the communications
area to be passed to the query management interface.

2) This program handles the RUN PROC interface command.
It reads the passed procedure name and form information,
reformats it, calculates the length, then passes the
information to query management.

*OX ® Kk %k ok F X ¥ * F
* F X %k F X ok * * X *

B T L X &L 3

H

*

E VAL 42 1 value to pass
*

I DS

I B 1 40BIN1

I/COPY BPLIB/QRPGSRC,DSQCOMMR

*

* receive the passed run procedure command information:
*

C *ENTRY PLIST
C PARM DSQCOM comms area
C PARM RUNP 33 procedure name

*

* prepare the run procedure command:

C MOVEA ' RUN! VAL Set up RUN

C MOVEA' PROC' VAL,5 PROC and

C MOVEARUNP VAL, 10 Procedure name
*

C Z-ADD11 X 20 Set array index
C vt LOKUPVAL, X 60Find last blank
C 60 SUB 1 X Last non blank
C N60 Z-ADD42 X No blanks Teft

* process the run procedure command:

C CALL DSQCIR
C PARM DSQCOM comms area
C PARM X BIN1 command Tength
C PARM VAL command
*
C RETRN

Figure 6-6. Example RUNP Subprogram

6-12 As/00 Query Management/400 Programmer’s Guide

EXIT Subprogram

The EXIT subprogram requires no additional parameters to the DSQCOM communi-
cations area. When called, it ends the query interface, ends itself, then returns to
the program that called it.

Kkkkkhkkkkhkrkhkkkhkkhhhkhdhhhkkhhhhkhhhhhhhhkkhhhkhhhhkkrkhkhrhhhhrhihx

EXIT COMMAND CPI QUERY INTERFACE HANDLER

1) Include member DSQCOMMR contains the communications
area to be passed to the query management interface.
2) This program handles the EXIT interface command.
It passes to query management the command length
and command.

* X % %k ok X X Ok * *
* % Kk ¥ %k * X X F *

*hkkkkhhkhhhhhhkhkhhkhkkhhkhhhkhkhhhhhhhhkhkhhhhrkdhhhhhhkhhhkdhkkhhhrx

H
*
I DS
I B 1 40BIN1
I/COPY BPLIB/QRPGSRC,DSQCOMMR
*

* peceive the passed communications area:
*
C *ENTRY PLIST
C PARM DSQCOM comms area

*

* call the interface and end the session:
*

C CALL DSQCIR

C PARM DSQCOM comms area

C PARM 4 BIN1 command length
C PARM ‘'EXIT' DATA 4 command

*

C MOVE ‘1' *INLR end program

Figure 6-7. Example EXIT Subprogram

Chapter 6. Subprogram Use and CPI Handling 6-13

6-14 AS/400 Query Management/400 Programmer’s Guide

Chapter 7. Query Management/400 Considerations

This chapter describes how query management interacts with other system func-
tions and suggests some techniques to help you work with the product.

Override Considerations

You can use overrides specified by the Override Database File (OVRDBF) command
to redirect a reference to a different file. The following sections discuss some con-
siderations of how overrides are handled when query management processes dif-
ferent types of files.

Tables and Views

© Copyright IBM Corp. 1991

Override considerations for tables and views referred to in the Structured Query
Language (SQL) statement during a RUN QUERY command are the same as those
used in SQL. The following parameters are processed when you specify an over-
ride:

TOFILE
MBR
SEQONLY
LVLCHK
INHWRT
WAITRCD

SQL can process a member other than the first member in a query management
query by specifying the desired member with the MBR keyword on the OVRDBF
command prior to the RUN QUERY.

The query fails if it selects a member from a file that has an override of MBR(*ALL).
For more information about using overrides in an SQL statement, see the SQL/400*
Programmer’s Guide.

Tables Referred to on the ERASE TABLE Command
Overrides are ignored on the ERASE TABLE command.

Tables and Views Referred to on the SAVE DATA AS Command

You can direct query management to process a file other than the table or view
specified on the command by using the OVRDBF CL command. Overrides are
ignored if the file specified on the TOFILE keyword of the OVRDBF command does
not exist. ‘

You can save data to a member other than the first member of the file by specifying
the desired member on the MBR keyword of the OVRDBF command before issuing
the SAVE DATA AS command.

If you issue a SAVE DATA AS command to a file that has an override of MBR(*ALL),
the command fails.

The following parameters are processed on the SAVE DATA AS command if an
override is specified:

¢ TOFILE
* MBR

* SEQONLY
* LVLCHK
* INHWRT
WAITRCD

IMPORT and EXPORT Source Files

Overrides on the source files referred to by an IMPORT or EXPORT command are
processed.

The following parameters are processed on an IMPORT or EXPORT command if an
override is specified on the source file:

* TOFILE
* MBR

An IMPORT from a source file that has an override of MBR(*ALL) is allowed. The
IMPORT processes each record of each member. The members are read in the
order in which they are created. The IMPORT completion message lists only the
name of the first member processed during the import.

An EXPORT to a source file fails if it has an override of MBR(*ALL).

If an EXPORT refers to a file name that has an override, and the file to which the
override is directed does not exist, query management creates the file. The file is
named the same as the name specified on the TOFILE keyword on the OVRDBF
command. For example, the following CL command was run prior to calling query
management:

OVRDBF FILE(XYZ) TOFILE(MYLIB/MYFILE)

The file MYFILE in MYLIB does not exist. The following query management
command results in the creation of a source physical file named MYFILE created in
the library MYLIB:.

EXPORT QUERY MYQUERY TO XYZ

A member name specified with an override takes precedence over a member name
specified on the command. For example, the following CL command was run prior
to calling query management:

OVRDBF FILE(XYZ) TOFILE(MYLIB/MYFILE) MBR(MEMBER2)
Issuing the following query management command results in the source for the
query MYQUERY being put in member MEMBER?2 of file MYFILE in library MYLIB:
EXPORT QUERY MYQUERY TO XYZ(MEMBER1)

Query Procedures

Overrides are not processed on files referred to as query procedures on RUN PROC,
ERASE PROGC, PRINT PROC, IMPORT PROC, or EXPORT PROC commands. Over-
rides of other files processed by query commands in procedures being run with the
RUN PROC are processed. Overrides of the source files specified on IMPORT PROC
and EXPORT PROC commands are processed.

7-2 AS/400 Query Management/400 Programmer’s Guide

Query management cannot process overrides on any files while processing a proce-
dure if those files have the same name as the procedure being run. This rule
applies to:

¢ The source file on an IMPORT PROC or EXPORT PROC command if the source
file has the same name as the procedure file.

* The source files on any IMPORT or EXPORT command that is run in a procedure

with the same name, or to any procedure nested in a procedure of the same
name.

* The file referred to on a SAVE DATA AS command if the command is run in a
procedure with the same name, or to any procedure nested in a procedure of the
same name.

¢ A file referred to by the SQL statement in a query if the RUN query is runin a
procedure with the same name, or to any procedure nested in a procedure of the
same name.

The following is an example of how overrides on PROC statements are processed.

The following CL commands were run prior to calling query management:

OVRDBF FILE(XYZ) TOFILE(MYLIB/MYFILE)
OVRDBF FILE(ABC) TOFILE(MYLIB/MYFILE)

The following commands result in processing the procedure ABC in MYLIB even
though the above CL command overrides file ABC to the file MYFILE.
RUN PROC MYLIB/ABC

PRINT PROC MYLIB/ABC
ERASE PROC MYLIB/ABC

The following IMPORT command imports the procedure ABC in MYLIB from the
source file MYFILE in MYLIB because the override was not processed for the
query procedure, but it was for the source file.

IMPORT PROC MYLIB/ABC FROM MYLIB/XYZ
The following EXPORT command imports the procedure ABC in MYLIB to the
source file ABC in MYLIB because the override was not processed for the query

procedure. Because the file that was specified on the source file was the same
as the query procedure, overrides were not processed.

EXPORT PROC MYLIB/ABC(MEMBER1) TO MYLIB/ABC(MEMBER2)
The query called QUERY1 contains the SQL statement:
SELECT * FROM MYLIB/ABC Al, MYLIB/XYZ A2 WHERE Al.X=B1l.X

and the file MYLIB/ABC contains the command RUN QUERY QUERY1l. The following
RUN PROC command runs the query procedure ABC in MYLIB. When the query
is run, the data is selected from the files ABC in MYLIB and MYFILE in MYLIB.
The overrides for file ABC are not processed during the processing of the query
procedure ABC.

RUN PROC MYLIB/ABC

For more information on overrides, see the Database Guide and the Data Manage-
ment Guide.

Chapter 7. Query Management/400 Considerations 7-3

Miscellaneous Tips and Techniques

This section describes special applications for query management functions and
suggests other ways to use other products and system functions to make working
with query management easier.

Printing a Query Management Object

When printing any query management object, create a source file member and edit
it. Use the following instructions to complete the printing process using the member
created:

* Print a query (QMQRY) object by putting the following statement in the source
file member created at the start of the session:

'PRINT QUERY libname/queryname (PRINTER= printername'

Then run the Start Query Management Procedure (STRQMPRC) CL command
against the procedure member to print the contents of the query management
query.

¢ Print a form (QMFORM) object by putting the following statement in the source
file member created at the start of the session:

'PRINT FORM libname/formname (PRINTER= printername'

Then run the Start Query Management Procedure (STRQMPRC) CL command to
print the contents of the query management form.

* Print a procedure (QMPROC) object by putting the following statement in the
source file member created at the start of the session:

£ e e

Then run the Start Query Management Procedure (STRQMPRC) CL command
against the procedure member to print the contents of the query management
procedure.

Changing STRQMQRY Defaults for QRYDFN Use

If you prefer to use the WRKQRY command to develop and maintain the query and
form information used by query management, it may be convenient to use a copy of
the STRQMQRY command that has been changed to use defaults that let you run a
QRYDFN object just by naming it. For example, you could create the command
STRQRYDFN in the current library for your job by entering the following commands:

CRTDUPOBJ 0BJ(STRQMQRY) FROMLIB(QSYS) OBJTYPE(*CMD) TOLIB(*CURLIB)
NEWOBJ (STRQRYDFN)

CHGCMDDFT CMD(*CURLIB/STRQRYDFN) NEWDFT('QMFORM(*QMQRY)')
CHGCMDDFT CMD(*CURLIB/STRQRYDFN) NEWDFT('ALWQRYDFN(*YES)')

To run QRY1 in the current library (*CURLIB), type STRQRYDFN *CURLIB/QRY1, or just
STRQRYDFN QRY1.

7-4 AS/400 Query Management/400 Programmer’s Guide

Displaying Information about Using QRYDFN Objects

To read about the system actions taken when there are problems deriving informa-
tion from QRYDFN objects, display the query management conversion messages
using the following command string:

DSPMSGD RANGE (QWM2301 QWM2399) DETAIL(*BASIC)

The messages that are displayed may contain warnings about unexpected conse-
quences of the system action taken, or suggest ways of avoiding or minimizing
problems of the sort diagnosed by the message.

| Defining Queries with Global Variables Using Query/400

Query/400 supports a data or text merge function that involves using dependent
QRYDFN objects that cannot be run the same as other QRYDFN objects. These
objects are different because record selection tests contain variables (dependent
values). You can use query management to run these queries if you assign the
correct values to these variables.

When information for a query is derived from a dependent QRYDFN object,
dependent values are converted to global variables: :T01.cusnam becomes
&T01_CUSNAM, for example. (You are prompted for a value for T01_CUSNAM if you did
not specify one on the SETVAR parameter when using the STRQMQRY command to
run the query.)

Use the SETVAR parameter to insert the value you want into the WHERE clause of
the derived SELECT statement. You could, for example, specify the value ‘“Smith”

You can create a CL program and command to improve the prompting, provide pos-
sible choices, and restrict or validate the values entered.

Using RUNQRY to Process Data

The Systems Application Architecture (SAA) database does not support some que-

| rying functions available through Query/400 (such as alternative collating sequences

| and unmatched records joining). On the other hand, Query/400 lacks many of the

| formatting functions available through query management and does not produce
parallel printed reports. You may be able to take advantage of the strengths of both
products by defining two QRYDFN objects for report generation. For example,
create the following objects for report generation:

1. Create the first object to be run by Query/400 to collect the data using one or
more non-SAA querying functions, and save it in a database file.

2. Create the second object to be run by query management to produce a printed or
displayed report from the saved data, or use it as the base from which to create
QMQRY and QMFORM objects to run for this purpose.

3. Store the intermediate file in QTEMP for convenience and write a CL program to
run the paired queries.

Chapter 7. Query Management/400 Considerations 7-5

| Using Query/400 to Create a QMFORM for an Existing QMQRY

You can use Query/400 to define form information based on the defaults if running
an existing QMQRY object with the system default (*SYSDFT) form does not produce
the formatting results you want. The following steps show the procedure for
defining form information based on system defaults:

1. Run the QMQRY object and save the data in a table.
2. Use WRKQRY option 1 (Create) to define a QRYDFN object.
a. Specify the table in which the data was saved as the file selection.

b. Consider using the following functions tolerated but not supported by
Query/400:

¢ &field insertion variables in page text
* &field insertion variables ended with an underscore character
* Variables other than break field insertion variables in break or final text
¢ &column# insertion variables ended with any nondigit character
c. Save your definition work as a QRYDFN object.

3. Request query management use the form information from the new QRYDFN
object when running the original query, or retrieve the form information and use
it to create a QMFORM to use with the QMQRY object.

Displaying Data from a Single Oversized Record

If you have a QRYDFN object that produces a single-record, multiple-column report
that is too wide to see in column-headed format, you can create a form that lets you
see the whole report in captioned format. Create the new form using the following
steps:

1. Use the WRKQRY command to change the QRYDFN object:
a. Specify 0 length for all report columns.

b. Define page heading text with appropriately arranged captions and insert
variables. Up to 3 lines are available.

c. Use page footing text as desired.

2. Retrieve the form source, and make any desired adjustments (for example, addi-
tional page heading or footing text lines, left alignment, or spacing).

3. Create the query management form object from the adjusted source.

4. Run the query using the form created to show the complete report.

7-6 As/400 Query Management/400 Programmer’s Guide

The following is an example of a displayed single-record report in captioned form:

-)
Display Report
Query3 USRLIB/QI Width . . .: 71
Form: USRLIB/QI Column . .: 1
Control .
R T ST ST P S ST U FUDUE TOUE: S S T R N L
000001 Attn (tele) . . . : Howard Jones (218-485-0162)
000002 Account name . . : International Milling Company
000003 Address : 4126 Kettering Memorial Parkway
000004 City, state . . . : Fort Wayne, In.
000005 Zip : 46815
000006
000007 Invoice # : B12358-9
000008 Date shipped . . : 03/27/90
000009 Hauler : Dave (3-7809)
000010
000011
*kkkkk * % k % * END OF DATA * * % % %
Bottom
F3=Exit F12=Cancel F19=Left F20=Right F21=Split ‘)

Using Query Management or CL Commands in PDM Options

You may find it convenient to use programming development manager (PDM) to
work on lists of QMQRY, QMFORM, or QRYDFN objects. Define options that run CL
commands (for example, STRQMQRY or ANZQRY) after substituting library and
object names selected when you type the option code beside a list entry. For
example:

* Define option SQ to be:
STRQMQRY &L/&N QMFORM(*QMQRY) ALWQRYDFN(*YES).
Then use SQ to display a report using query and form information derived from a
selected QRYDFN object without having to remember to override the defaults
QMFORM(*SYSDFT) and ALWQRYDFN(*NO).

e Define option Z to be:
ANZQRY &L/&N 99.
Then type Z beside all the names in a list of QRYDFN objects to get completion

messages. Check these messages to see which QRYDFN objects may need
adjustment for satisfactory query management use.

You could define other options to run user-developed CL commands or to call user-
developed CL programs that act on query management objects.

Creating a CL Program for Permanent Conversion of a QRYDFN
Object

You may want to create a CL program to convert QRYDFN objects to query manage-
ment objects if this operation is performed frequently. Define parameters for the
program to specify object names and other variables.

Chapter 7. Query Management/400 Considerations ~ 7=7

Columns . . . :

SEU==>

FMT

0001
0002

nnno

0008
0009

0010.
.00

0011

0012.
.00

0013

0014.
0015.
0016.
.00

0017

0018.
.00

0015

0019.
0020.
.00
.00
0022.

0015
0021

**

.00
.00
0003.
0004.
0005.
0006.
0007.
.00
.00

00
00
00
00
00

00
00
00
00
00
00
00
00

00

Figure 7-1is an example of the source for a program that converts QRYDFN infor-
mation into query management objects. This program assumes *LIBL should be
searched for the QRYDFN object, and that query management objects should be
placed in *CURLIB. It shows the report produced from the QRYDFN object by
Query/400, then the report produced from converted objects by query management.
if the request is not canceled, the program copies the converted objects from
QTEMP to *CURLIB.

1 68 Edit USRLIB/QCLSRC
MIGRATE
T T T - O R C T B - SO Y ; B S

kkkkhkhkkkdkkhkk Beginn-ing of data khkkkkkkhkhhhkkkhkhhhhhhhkhhrhhkkdhkrhrk

PGM PARM(&0BJ)

DCL VAR(&O0BJ) TYPE(*CHAR) LEN(10)

CRTSRCPF QTEMP/QQMQRYSRC 91

MONMSG MSGID(CPF7302)

CRTSRCPF QTEMP/QQMFORMSRC 162

MONMSG MSGID(CPF7302)

RUNQRY *LIBL/&0BJ OUTPUT(*)

RTVQMQRY *LIBL/&0BJ QTEMP/QQMQRYSRC &0BJ ALWQRYDFN(*YES)
MONMSG MSGID(QWM2701)

CRTQMQRY QTEMP/&0BJ QTEMP/QQMQRYSRC &0BJ

MONMSG MSGID(QWM2701)

RTVQMFORM *LIBL/&0BJ QTEMP/QQMFORMSRC &0BJ ALWQRYDFN(*YES)
MONMSG MSGID(QWM2701)

CRTQMFORM QTEMP/&0BJ QTEMP/QQMFORMSRC &0BJ

MONMSG MSGID(QWM2701)

STRQMQRY QMQRY (&0BJ) QMFORM(*QMQRY)

MONMSG MSGID(QWM2701 QWM2703) EXEC(RETURN)

DLTQMQRY QMQRY (*CURLIB/&0BJ)

MONMSG MSGID(CPF2105)

CRTDUPOBJ 0BJ(&0BJ) FROMLIB(QTEMP) OBJTYPE(*QMQRY) TOLIB(*CURLIB)
DLTQMFORM QMFORM(*CURLIB/&0BJ)

MONMSG MSGID(CPF2105)

CRTDUPOBJ 0BJ(&0BJ) FROMLIB(QTEMP) OBJTYPE(*QMFORM) TOLIB(*CURLIB)
ENDPGM

F*hkkhhhkhhhkkhhhhik End of data R P T T T T

Figure 7-1. CL Source for Permanent Conversion Program

Querying for Field Values

7-8

You can create a generic query to display an ordered list of the values used in a
field of a particular file. The library, file, and field names can be global variables to
be set when the query is run. The following is an example of a SELECT statement
that creates a generic query:

SELECT DISTINCT &FIELD FROM &LIBRARY/&FILE ORDER BY 1

Run the QMQRY object created from this statement to get the list specified in the
following SETVAR parameter (this assumes you name the created QMQRY object
qryvalues, and you have a database file named staff, in the library testdata, with a
field named dept):

STRQMQRY gryvalues SETVAR((FIELD dept) (LIBRARY testdata) (FILE staff))

Get a subset of the values by adding a record selection test when you set the vari-
ables:

AS/400 Query Management/400 Programmer’s Guide

STRQMQRY gryvalues SETVAR((FIELD dept) (LIBRARY testdata)
(FILE 'staff where dept > 50'))

View all the columns (with no records duplicated) by using an asterisk (*) when you
set the variables:

STRQMQRY qryvalues SETVAR((FIELD '*') (LIBRARY testdata) (FILE staff))

Make it easier to specify values for the global variables by writing simple CL
prompting programs and commands. Set it up so that you can get the list you want

by typing:
q testdata/staff dept

This is a helpful command to use if you are using source entry utility (SEU) to edit
query source and want to see which values could be used in tests. SEU permits you
to request a window for entering system or user-defined commands.

Passing Variable Values to a Query

Global variable names are not necessarily meaningful, and a user being prompted
for a value may not know what to type. You can write CL programs and commands
to provide meaningful prompting and validation of typed values. Figure 7-2 and
Figure 7-3 show source statements that you can use to create a program and to
create a command for a query that shows an ordered list of values for a specified
field in the first member of a specified file. Create a CL program from the program
source, then specify it as the command processing program when the command is
created from the command source.

0001.00 PGM PARM(&FILE &FIELD)

0002.00 DCL VAR(&FILE) TYPE(*CHAR) LEN(20)

0003.00 DCL VAR(&LIB) TYPE(*CHAR) LEN(10)

0004.00 DCL VAR(&TABLE) TYPE(*CHAR) LEN(10)

0005.00 DCL VAR(&FIELD) TYPE(*CHAR) LEN(10)

0006.00 CHGVAR &LIB %SUBSTRING(&FILE 11 10)

0007.00 CHGVAR &TABLE %SUBSTRING(&FILE 1 10)

0008.00 STRQMQRY CAJR30/QRYVALUES SETVAR((LIBRARY &LIB)(FILE &TABLE)(FIELD &FIELD))
0009.00 ENDPGM

Figure 7-2. CL Source for Global Variable Prompting Program

*kkkk*k

0001.00 Q: CMD PROMPT (' Query Column Values(Q)')
0002.00 PARM KWD(FILE) TYPE(Q1) MIN(1) MAX(1) +
0003.00 PROMPT('Table name')

0004.00 PARM KWD(FIELD) TYPE(*CHAR) LEN(10) +
0005.00 PROMPT('Column name')

0006.00 Q1: QUAL TYPE(*NAME) LEN(10) MIN(1)

0007.00 QUAL TYPE(*NAME) LEN(10) +

0008.00 DFT(*LIBL) +

0009.00 SPCVAL(*LIBL (*CURLIB *CURLIB)) +
0010.00 PROMPT('Collection')

Figure 7-3. CL Source for Global Variable Prompting Command

Chapter 7. Query Management/400 Considerations 7-9

The following figure is a sample of a user-developed prompting display needed for
passing variable values:

()
Query Column Values (Q)
Type choices, press Enter.

Tablename Name
Collection *LIBL Name, *LIBL, *CURLIB
Column name

Bottom
F3=Exit F4=Prompt F5=Refresh Fl12=Cancel Fl3=How to use this display
F24=More keys

g J

Defining a Column with No Column Heading

To prevent a column from having a heading, specify *NONE in the leftmost position
of the top heading line shown when working on the definition under interactive data
definition utility (IDDU) or the WRKQRY command. You can also specify a single
underline character as the column heading in form source, but this causes the
report to have at least two lines reserved for column headings. In either case, the
column still has separators unless you eliminate column heading separators from
the whole report. To eliminate column heading separators, retrieve and edit the
appropriate field in the form source, and create the form again.

Using Query Management to Format an ISQL-Developed Query

7-10

You can use Structured Query Language (SQL) interactively to develop a query that
uses any of the supported SQL database functions. By using the Interactive Struc-
tured Query Language (ISQL) product, which exists on top of SQL, you can run SQL
commands interactively. These functions include subqueries, scalar functions,
GROUP BY statements, and others not available through the Query/400 prompted
interface. The following steps describe how to get an ISQL-developed SELECT
statement into a QMQRY object, and how to use Query/400 to define information that
query management can use to format the displayed or printed output from running
this QMQRY object:

1. Specify the Start Structured Query Language (STRSQL) command.
a. Use ISQL to develop the query you want.

b. Create a database (collection) to receive the output of this query, or use a
previously created collection.

c. Change the output device for the session to be a database file in the previ-
ously created collection. Use a name (for example, QRYPURPOSE) that
describes the purpose of the query.

d. Run the query again to create the file (table) QRYPURPOSE.

AS/400 Query Management/400 Programmer’s Guide

e. Save the query session as member QRYPURPOSE. Remember the file and
library names you specify so you can edit the session later for use as query
management query source.

f. Exit the ISQL session.

2. Specify the Start System Entry Utility (STRSEU) command to edit the saved
session.

a. Remove all lines other than those containing the SELECT statement that
defines your query.

b. Add any comments that are needed.

c. Replace appropriate elements in the SELECT statement with global vari-
ables.

d. Exit SEU, saving the changed member.

3. Use the Create Query Management Query (CRTQMQRY) command to create the
QMQRY object QRYPURPOSE from member QRYPURPOSE.

4. Specify the WRKQRY command and choose the Create option.
a. Select file QRYPURPOSE created in the ISQL session.

b. Specify report column formatting overrides. The defaults shown are the
same as ISQL used to show the report, but not the same as query manage-
ment would use if you ran QRYPURPOSE with the *SYSDFT form. If you want
to use the defaults shown, make Query/400 treat them as overrides so that
they will be saved with the QRYDFN object. (Any change to column headings
causes the default to be considered overridden, even if you put back the ori-
ginal default value. The same is true for length, decimal positions, and
numeric editing.)

¢. Use edit codes J (numeric values), J$ (currency values), and M (numeric
identifiers) to define editing you can convert to SAA edit codes incorporating
any decimal position overrides you specify.

d. Add any extra formatting you think will improve your report. You can, for
example, define final text and overall summaries to appear below columns
defined as aggregating scalar functions in the SELECT statement saved in
QRYPURPOSE.

e. Save your formatting choices as QRYDFN object QRYPURPOSE.

5. Optionally retrieve form source from QRYDFN QRYPURPOSE and use it to create
QMFORM QRYPURPOSE.

6. Use the STRQMQRY command to run query QRYPURPOSE. Use
QMFORM(*QMQRY) and, if you did not create a QMFORM from QRYDFN
QRYPURPOSE, specify ALWQRYDFN(*YES) to allow use of formatting informa-
tion derived from the QRYDFN object.

Figure 7-4 shows an ISQL-developed query.

Chapter 7. Query Management/400 Considerations 7-11

IBM Query Management/400

Query MAXSALARY
Library : USRLIB
Text . o
SEQNBR *...+.... 1. .ctoii 200t 3 c b b s o Bl b Bl T

000001 select dept,max(salary) from testdata/staff group by dept
* % % % % END OF SOURCE

* * x % *

Figure 7-4. Sample Printed ISQL-Developed QMQRY Object

The following display shows the formatted report produced from the query in
Figure 7-4. This report was created by query management use of form information
derived from a QRYDFN object created from the ISQL output file definition.

4 I
Display Report

Query: USRLIB/MAXSALARY Width . . .: 36
Form: USRLIB/MAXSALARY Column . .: 1
Control
Line J.. o4 doichiii2oi b0 30 b bkl 5L L WGl

Maximum

Dept Salary
000001
000002
000003 10 $22,959.20
000004 15 $20,659.80
000005 20 $18,357.50
000006 38 $18,006.00
000007 42 $18,352.80
000008 51 $21,150.00
000009 66 $21,000.00
000010 84 $19,818.00
000011 ====s===z===z
000012 Overall maximum:
000013 $22,959.20
More...
F3=Exit F12=Cancel F19=Left F20=Right F21=Split
— J

Using Text Insertion Variables To Stack Captions on Final Summaries

The following figure shows a final level summary report with the summary values
stacked and captioned. It demonstrates that the final summary values can be kept
on one page and shown in any desired order instead of being spread over multiple
displays or printer files in separate columns.

IN NN
(Salary analysis for 35 employees in department 10)

Minimum : $10,506
Maximum : $22,959
Average : $16,676
Total : $583,647

IN

Figure 7-5. Final Level Summary Values as Cover Page and Heading Text Insertions

The report was produced by query management from a single QRYDFN object with
the following characteristics:

e Summary-only output form

7-12 AS/400 Query Management/400 Programmer’s Guide

* No break fields selected

¢ Final level summaries not suppressed

e Summaries selected

¢ Length 0 specified for all summary fields to be used as inserts

* Cover page and page heading text containing the desired captions and headings
with summary value insert placement indicated by &# references to output
column numbers

Note: All field widths set to 0 is diagnosed, and no report is produced, when an
attempt is made to run the QRYDFN using Query/400.

Text insertion can be used in combination with tabular layout. To produce the
example that follows, record selection tests were defined to limit the output to a par-
ticular customer (specified at run time because of the use of a global variable), and
MIN and COUNT functions were defined to supply the inserts for the cover page text
used to define the label and for the final text.

INENININENINININNININININNN N

Orders Inquiry

Herman B. Wannamaker
3124 Melrose Ave - Apt 35
Gooseneck, NY 55945

TOTAL AVG MAX MIN
Charges Price Price Price
$3,859.72 $79.54 $1024.89 $3.50

Number of transactions: 35

INANINAINN

Figure 7-6. Final Level Text Insertions with Summary Table
Converting a Multiple-Level Summary-Only QRYDFN

The following figures show summary-only reports that have both break summaries
and final summaries. The query management report was produced with the lowest
level summaries coming from SQL column functions in a query-defining QRYDFN
object, and the other summaries coming from column usages in a second, form-
defining QRYDFN object. Here is how it was done. A copy of the original QRYDFN
was changed to collapse all levels and suppress final summaries, then saved for
use as the query. Another copy was changed to suppress summaries at the lowest
level, then saved for use as the form. Then STRQMQRY was applied to the query
and form with the use of QRYDFN objects allowed. Note that the overall average is
really an average of averages.

Chapter 7. Query Management/400 Considerations 7-13

AVERAGE

Salary Report Summary, 1989
MAXIMUM
Salary

Salary

$12,655.
$10,988.
$12,689.
$12,258.
$12,769.
$12,482.
$14,252.

$12,585.

$18,383.
$21,150.
$19,889.
$18,555.
$20,162.

Job Years
CLERK 0
1
3
4
5
6
8
Overall CLERK:
MANAGER 5
6
7
9
10
12

$21,234.

Overall MANAGER:

SALES

WOwooNOTUIL PO

p—

$19,895.

$16,808.
$16,858.
$15,454.
$18,488.
$17,333.
$18,171.

$18,674.
$21,000.

LYY

50
00

Overall SALES:

Overall:

06/18/90 09:50:21

Figure 7-7. Form Usages Applied to SQL Column Functions

$16,679.

7-14 AS/400 Query Management/400 Programmer’s Guide

MINIMUM

Salary

$11,508.
$10,988.
$12,009.
$12,258.
$12,508.
$10,505.
$14,252.

$10,505.

$17,506.
$21,150.
$18,352.
$18,555.
$19,818.
$21,234.

$17,506.

$16,808.
$16,858.
$15,454.
$18,001.
$16,502.
$18,171.

$18,674.
$21,000.

Li1,00

$10,505.

50
09

$13,504.
$10,988.
$13,369.
$12,258.
$13,030.
$14,460.
$14,252.

$14,460.

$19,260.
$21,150.
$22,959.
$18,555.
$20,659.
$21,234.

$22,959.

$16,808.
$16,858.
$15,454.
$19,456.
$17,844.
$18,171.
$18,674.

$21.000
$ v

LRIV,

$22,959.

50
00

vy

06/21/90 14:23:04 Salary Report Summary, 1989 Page 1

Job
CLERK

CLERK

CLERK

CLERK

CLERK

CLERK

CLERK

CLERK

MANAGER

MANAGER

Years Salary

0

AVG $12,655.98
MIN $11,508.60
MAX $13,504.60

1

AVG $10,988.00
MIN $10,988.00
MAX $10,988.00

3

AVG $12,689.78
MIN $12,009.75
MAX $13,369.80

4

AVG $12,258.50
MIN $12,258.50
MAX $12,258.50

5

AVG $12,769.35
MIN $12,508.20
MAX $13,030.50

6

AVG $12,482.95
MIN $10,505.90
MAX $14,460.00

8

AVG $14,252.75
MIN $14,252.75
MAX $14,252.75

Overall CLERK:
AVG $12,612.61
MIN $10,505.90
MAX $14,460.00

5

AVG $18,383.50
MIN $17,506.75
MAX $19,260.25

6

AVG $21,150.00
MIN $21,150.00
MAX $21,150.00

Figure 7-8 (Part 1 of 3). Report with Multiple Break Levels - Query/400

Chapter 7. Query Management/400 Considerations

7-15

06/21/90 14:23:04 Salary Report Summary, 1989 Page 2
Job Years Salary

7-16

MANAGER

MANAGER

MANAGER

MANAGER

MANAGER

SALES

SALES

SALES

SALES

SALES

Figure 7-8 (Part 2 of 3). Report with Multiple Break Levels - Query/400

7

AVG $19,889.83
MIN $18,352.80
MAX $22,959.20
9

AVG $18,555.50
MIN $18,555.50
MAX $18,555.50

10

AVG $20,162.60
MIN $19,818.00
MAX $20,659.80

12

AVG $21,234.00
MIN $21,234.00
MAX $21,234.00

Overall MANAGER:
AVG $19,805.80
MIN $17,506.75
MAX $22,959.20

0
AVG $16,808.30
MIN $16,808.30
MAX $16,808.30
4

AVG $16,858.20
MIN $16,858.20
MAX $16,858.20

5

AVG $15,454.50
MIN $15,454.50
MAX $15,454.50

6

AVG $18,488.08
MIN $18,001.75
MAX $19,456.50

7

AVG $17,333.78
MIN $16,502.83
MAX $17,844.00

AS/400 Query Management/400 Programmer’s Guide

06/21/90 14:23:04 Salary Report Summary, 1989 Page 3
Job Years Salary
SALES 8

AVG $18,171.25

MIN $18,171.25

MAX $18,171.25

SALES 9
AVG $18,674.50
MIN $18,674.50
MAX $18,674.50

SALES 13
AVG $21,000.00
MIN $21,000.00
MAX $21,000.00

SALES
Overall SALES:
AVG $17,869.36
MIN $15,454.50
MAX $21,000.00

Overall:
AVG $16,675.64
MIN $10,505.90
MAX $22,959.20
%% EFND OF REPORT * * *

Figure 7-8 (Part 3 of 3). Report with Multiple Break Levels - Query/400
Sorting and Subsetting Break Level Summary Groups

If you have a QRYDFN or QMQRY object that produces a break level summary
report (the SQL statement contains SQL column functions and a GROUP BY clause),
you can create source for a QMQRY object that uses column function values to
exclude unwanted groups and order the rest by editing HAVING and ORDER BY
clauses in the retrieved source.

Using Information from Query/400 QRYDFN Objects

Query management is able to derive information for running queries and formatting
reports from QRYDFN objects created by Query/400. Conversion to query manage-
ment query (QMQRY) and form (QMFORM) objects is not required. Refer to the
DSQSCNVT parameter of the CPI START command for information about how to
take advantage of this capability from a user-written program. Refer to the
ALWQRYDFN parameter on the following CL commands for information about how
to take advantage of this capability interactively or from a CL program:

¢ STRQMPRC - run a procedure (a stored sequence of CPl commands)

e STRQMQRY - run a query and either save the data or format a report

¢ RTVQMAQRY - retrieve editable query management query source

¢ RTVQMFORM - retrieve editable query management form source
Some of the functions that can be specified and saved in a QRYDFN object cannot
be transformed into query-management-supported SAA functions, and some cannot

be precisely transformed. Except for the case where a SELECT statement grows
beyond 32KB in length and it is not possible to use the derived query information,

Chapter 7. Query Management/400 Considerations 7-17

query management uses the derived information and issues no warnings about the
actions taken (truncation, and so on) when a transformation problem is encountered.
The ANZQRY command provides analysis in the form of messages and online help
information that suggest ways of dealing with transformation problems.

Different, and possibly unacceptable, output can be produced from derived informa-
tion even when there are no transformation problems. Query management may
provide different defaults for functions that cannot be specified, or use successfully
transformed choices differently. The Query Management/400 Reference manual has
detailed information about the differences to expect when comparing query manage-
ment output with that from Query/400, as well as detailed suggestions about what to
do to get the best results from the use of information saved in a QRYDFN object.

Because the information saved in a QRYDFN object does not provide complete
access to a query management function, and because it is less efficient to derive
information from QRYDFN objects than from query management objects, many
users will want to convert QRYDFN objects to the corresponding QMQRY and
QMFORM objects. The Query Management/400 Reference manual explains how to
retrieve (export) information from QRYDFN objects and use it to create (import)
query management objects, and how to add function not available through the
Query/400 prompted interface for defining QRYDFN objects.

Using the STRQMQRY Command Instead of the RUNQRY Command
Both the Start Query Management Query (STRQMQRY) and the Run Query
(RUNQRY) commands can be used to produce a formatted report or database file
output according to specifications in a previously created QRYDFN object. The fol-
lowing examples demonstrate the minimum parameter requirements for each
command when the object to be run is a QRYDFN object.

RUNQRY my1ib/myqrydfn

STRQMQRY my1ib/myqrydfn QMFORM(*QMQRY) ALWQRYDFN(*YES)

Some reasons for using the STRQMQRY command:

* The appearance of a report can be improved if STRQMQRY is used. Refer to
figures contrasting Query/400 and query management output for a QRYDFN
defined to produce summary output for a single level of break values.

* STRQMAQRY also provides less restrictive use of QRYDFN information. Unlike
RUNQRY, STRQMQRY can complete successfully using:

— A QRYDFN object saved with errors
— A dependent query in batch mode
— Form and query information from separate objects

— Form information derived from a QRYDFN object that includes selection of a
file that is not defined on the system

— Query information derived from a QRYDFN object that includes a numeric
constant with a decimal point delimiter other than indicated by the QDECFMT
system value.

* Another possible STRQMQRY advantage when requesting summary-only infor-
mation from large files is a conversion mode (SQL summary) that uses an SQL
GROUP BY clause or column functions in the derived query instead of summary
function usages in the derived form. However, this more efficient way of
producing summary values and omitting detail records can only be used for a
QRYDFN with special characteristics. Refer to “Miscellaneous Considerations”
on page 7-20.

7-18 AS/400 Query Management/400 Programmer’s Guide

Using STRQMQRY instead of RUNQRY may not achieve acceptable results, or
certain actions may be necessary to ensure a successful outcome. Consider the fol-
lowing items first:

¢ |f STRQMQRY is used and there is a QMQRY or QMFORM named myqrydfn in
my1ib, information for running the query or formatting the report will be taken
from that object instead of the QRYDFN object unless *ONLY is specified as the
ALWQRYDFN parameter value. If *YES has to be specified to use the QRYDFN
object with a query management object, one of the objects may have to be
renamed or moved.

* Because the query database does not support member specification, it may be
necessary to use file overrides to cause the intended member to be used instead
of the *FIRST member (refer to “Override Considerations” on page 7-1).

¢ Both commands have OUTFILE parameters, but STRQMQRY has no *RUNOPT
default. This means that if other than displayed output is intended, OUTFILE and
related parameters must be specified for STRQMQRY because default values
from the QRYDFN object are not used.

e If the QRYDFN object is a dependent query, the dependent values must be set at
run-time. For the RUNQRY command, the record selection (RCDSLT) parameter
must be used. This requires interactive mode, and causes the Select records
prompt to be displayed so that the dependent values can be specified. For
STRQMQRY, the dependent value names are converted to global variables,
which can be set using the SETVAR parameter. The query can be run in batch
mode if the SETVAR parameter is used to specify values for all the global vari-
ables. In interactive mode, STRQMQRY uses INQUIRY messages to prompt for
any global variables not previously set by use of the SETVAR parameter.

e RUNQRY processing makes dynamic adjustments for changes made to a file
definition since the query was saved; STRQMQRY processing does not. The
QRYDFN object may need to be resaved before STRQMQRY is used.

¢ |f the acceptability of the RUNQRY result depends on any of the following, the
STRQMQRY result will probably be unacceptable. Parenthesized phrases indi-
cate the potentially unacceptable system action for each item:

- Dynamic resolution of field selections
(The saved field list is used)
- Data from a file with multiple formats
(No output is produced)
- Unmatched join with primary file
(A matched join is performed)
- Matched join with primary file
(A matched join is performed)
- Control of expression scale and precision
(Defaults are used for calculations)
- More than 255 field selections and extra function selections
(Only the first 255 selections are used)
- LIKE test of result expression with || or SUBSTR
(No output is produced)
- Non-EBCDIC collating
(No alternative collating is performed)
- Decimal position override with default numeric editing
(The number of decimal positions is the default value)
- Length override n to format n digits or characters
(The number of digits or characters is

Chapter 7. Query Management/400 Considerations 7-19

the default value)
- Length override with default numeric editing
(The default length is used)
- Length override with default column heading
(The default Iength is used)
- Edit override with default decimal positions
(Column values are edited with 0 decimal positions)
- Date and time numeric editing override
(The run-time default is used)
- Non-SAA numeric editing override
(SAA edit code K is used)
- Multiple summary functions for field in same column
(A separate column is added for each summary function)
- Omission of break field column
(The break field column is not omitted)
- Summary function for break field
(A separate column is added to hold summary values)
- Break text for non-SQL summary when 1st or only column has summary
(No break text is displayed)
- Final text for non-SQL summary when 1st or only column has summary
(No final text is displayed)
- Summary only output with multiple-level break summaries
(Detail records are not omitted)
- Summary only output with break and final summaries
(Detail records are not omitted)
- Summary only output with result field used for break control
(Detail records are not omitted)
- Column function other than COUNT for result field literal
(No output is produced for SQL summary)
- MAX column function for character field wider than SQL allows
(No output is produced for SQL summary)
- MIN column function for character field wider than SQL allows
(No output is produced for SQL summary)
- Total break fields size for GROUP BY wider than SQL allows
(No output is produced for SQL summary)
- Total break and summary columns size wider than SQL allows
(No output is produced for SQL summary)
- Line wrapping
(No line wrapping is used; parallel printer files are produced)
- Cover page text
(No cover page is printed)
- Page text wider than 55 characters
(Page text is truncated)
- Truncation of numeric overflow
(Numeric overflow is rounded)
- Ignoring of decimal data error
(Errors are not ignored; data is not corrected)

Miscellaneous Considerations

Knowing some things about the differences between Query/400 and query manage-
ment may help you get better results from using information derived from Query/400
definition objects:

* The form retrieved from a QRYDFN object may have blank column entries
causing warnings when the form is used to create a QMFORM object.

7-20 As/400 Query Management/400 Programmer’s Guide

The FROM clause in query source retrieved from a QRYDFN object uses system
naming conventions.

The default printer form width used by query management is smaller than that
used by Query/400. Parallel reports may be produced for a report that
Query/400 kept on one printer form width.

Queries defined for files created by other queries may not be usable with files
created by query management from information derived from these other
queries. This is especially likely if result fields are included in the output.

Dependent values in record selection tests are converted to global variables,
which must be set to suitable values before a derived query is run. For example,
t01.cusnam can be set using the global variable name T01_CUSNAM in the
SETVAR parameter of STRQMQRY.

Query/400 cannot run a definition if an expression or value contains a decimal
point delimiter that is not recognized. Query management can run such a defi-
nition because valid decimal point delimiters are converted to the delimiter indi-
cated by the QDECFMT system value.

SAA database processing truncates decimal positions after division of unscaled
values. The value calculated for 2/3 is 0, for example. For this reason, conver-
sion processing makes sure each numeric constant in an expression contains a
decimal point delimiter. This causes the size of the expression column to
include 15 digits to the right of the decimal point. Expressions involving division
of unscaled numeric fields (no constants) will probably cause unexpected
results.

SAA database processing rules for double-byte character set (DBCS) data are
different from those applied for Query/400. Use of concatenated strings to test
other than open strings should be avoided.

Because form text that is too long is truncated, conversion processing com-
presses blank strings.

If a QRYDFN object intended to produce summary-only output is suitably defined,
query management will convert query information into the following:

— An SQL SELECT statement with a GROUP BY clause

— A field selection list containing grouping columns or column functions (for
report break control fields and any selected summary functions).

If no report break is defined, only column functions are used. If a QRYDFN object
is not suitably defined for this mode of conversion, detail records will not be
omitted. A QRYDFN is not suitable for SQL summary conversion if any of the
following applies:

— Detail output type

— Multiple break levels

— Single break level but final summaries are not omitted
— Result field is used as a break control field

— Summary function other than COUNT for the result field with no file field ref-
erence

— MIN or MAX for a character field wider than SQL allows
— Total break fields larger than SQL allows

— Total break and summary columns larger than SQL allows

Chapter 7. Query Management/400 Considerations 7-21

e Summary-only output from query management cannot be added to a file created
by an earlier Query/400 running of the same QRYDFN object. This is because
Query/400 creates the file format with extra fields for holding level and overflow
feedback information, which query management does not provide or leave room
for.

Limits to Query Management Processing

Query management may not be able to process a report in the manner that you
prefer. The following sections discuss the limits to query management processing.

The Query Management Command

The command string on the callable interface is limited to 256 bytes. The command
string in a procedure prior to removing the quotation marks is also limited to 256
bytes.

You can specify a limit of 1000 keywords and variables on a single command. This
is a combined total of the keywords or variables specified as part of the command
string and keywords or variables specified through the extended interface. Dupli-
cate occurrences of the same keyword or variable count as part of the limit.

SQL Query

The size of the SQL query statement after blanks and comments are removed is
limited to 32KB minus 1 byte.

Externalized Query
The following limits exist on the source file that makes up the externalized query:

e Data in columns past column 79 is ignored if the record width is greater than 79
bytes.

* You can specify a maximum of 211 929 lines of source text.

Externalized Form
The following limits exist on the source file that makes up the externalized form:

* Data in columns past column 150 is ignored if the record width is greater than
150 bytes.

¢ Since query management allows duplicate information sections in the
externalized form object and allows a file to have an override of MBR(*ALL),
there is almost no limit on the number of source records in an externalized form
that can be handied.

Instances

You can specify a maximum of 25 query management instances per process or job
that are active at any one time.

7-22 AS/400 Query Management/400 Programmer’s Guide

Global Variables

A maximum of 1000 unique global variables can be set for each query management
instance.

Procedures

Query management supports any file width when running and printing a query pro-
cedure. When exporting and importing a query procedure, if the source file that is
the target of the command is created, it is created with a width of 79 bytes. If the
target of the command already exists and has a width less than the source, data
may be truncated. If the target has a width greater than the source, no data is lost,
and each record is padded with blanks.

Chapter 7. Query Management/400 Considerations 7-23

7-24 As/400 Query Management/400 Programmer’s Guide

 Chapter 8. Using Query/400 Definition Information

Query/400 definitions contain specifications for functions that are common to both
Query/400 and SAA (CPI) Query. Query management uses this information, saved
in Query/400 definition (QRYDFN) objects, to produce reports. This chapter
describes how to control query management’s use of the information contained in
QRYDFN objects, what to do if the results are unsatisfactory, and how to add func-
tions not available through the Query/400 displays.

QRYDFN Conversion

When a query management query (QMQRY) or form (QMFORM) object is needed for
command processing, query management searches the library or library list for an
object with a name that matches the one specified. You can force query manage-
ment to skip this search or, to search the library or library list for a Query/400 defi-
nition (QRYDFN) with the specified name. If a QRYDFN object is found to match the
search, the query or form information required for processing is derived from this
object, and appropriate messages and codes are returned to indicate that this has
happened.

Query management uses information from a QRYDFN regardless of any problems
encountered while deriving that information. No tests about possible defects or
functional differences are generated when QRYDFN is used.

The derived information is discarded when the request is compieted. Permanent
conversion to query management objects can be done by retrieving the query or
form source from a QRYDFN object, then using that source to create the query man-
agement object of that type.

Applying Query Management to QRYDFN Objects

© Copyright IBM Corp. 1991

Query management normally uses information only from query management
objects. You can request that query management use Query/400 information if
query management form or query information is not available. You can also prevent
query management form or query information from being used.
On the START command specify either:

¢ DSQSCNVT=YES

* DSQSCNVT=ONLY

When using:
¢ STRQMPRC (Start Query Management Procedure)
¢ STRQMQRY (Start Query Management Query)
e RTVQMQRY (Retrieve Query Management Query)
¢ RTVQMFORM (Retrieve Query Management Form)
specify either ALWQRYDFN(*YES) or ALWQRYDFN(*ONLY).
Although query management processing normally uses form and query information

derived from query management objects, information from Query/400 definition
objects can also be used. To do this, either:

* specify DSQSCNVT = YES or DSQSCNVT = ONLY on the START command

or

¢ specify ALWQRYDFN(*YES) or ALWQRYDFN(*ONLY) on the STRQMPRC,
STRQMQRY, RTVQMQRY, or RTVQMFORM CL command. This will cause
DSQSCNVT to be set to YES or ONLY.

The CPI commands shown in the following examples can be coded in a program or
procedure and applied directly to QRYDFN objects.

o RUN QUERY myqrydfn

* RUN QUERY myqrydfn (FORM = myqrydfn
¢ RUN QUERY myqrydfn (FORM=myqrydfn2
* RUN QUERY myqgmgqry (FORM=myqrydfn
* RUN QUERY mygqrydfn (FORM = mygmform
* PRINT REPORT (FORM = mygrydin

* PRINT QUERY myqrydfn

e PRINT FORM myqrydfn

e EXPORT QUERY myqrydfn

e EXPORT FORM myqrydfn

Note: myqrydfn and myqrydfn2 must have unique names so that query manage-
ment does not find a query or form object of the same name if the
DSQSCNVT value is YES instead of ONLY when it searches for an object to
use.

For the STRQMQRY, RTVQMQRY, and RTVQMFORM commands, query man-
agement will resolve names specified for any QMQRY keyword by looking
only for QRYDFN objects if you specify *ONLY as the ALWSQRYDFN keyword
value.

If you do not want Query/400 definitions to be used during query management proc-
essing, allow query management to default to DSQSCNVT = No on the START
command or ALWQRYDFN(*NO) on the STRQMPRC, STRQMQRY, RTVQMQRY, or
RTVQMFORM CL commands. Another way to stop query management from using a
QRYDFN object is to exclude the library containing the Query/400 definition from the
library or library list that query management searches for the information.

You can also convert queries created in a System/36 environment. Use the Convert
System/36 Query (CVTS36QRY) command to convert a System/36 query to a
Query/400 definition. Query management information can then be derived from the
QRYDFN object converted from the System/36 query.

Using the STRQMQRY Command Instead of the RUNQRY Command

8-2

You can use both the query management STRQMQRY command and the Query/400
RUNQRY command to produce a formatted report or database file output according
to specifications in a previously created QRYDFN object. The following example
illustrates the minimum parameter requirements for each command when the object
being run is a QRYDFN object:

RUNQRY my1ib/myqrydfn

STRQMQRY my1ib/myqrydfn QMFORM(*QMQRY) ALWQRYDFN(*ONLY)

AS/400 Query Management/400 Programmer’s Guide

Using the STRQMQRY command can improve the appearance of a report and
provide less restrictive use of QRYDFN information. Unlike the RUNQRY command,
STRQMQRY can complete successfully using the following:

¢ A QRYDFN object saved with errors
¢ A dependent query in batch mode
e Form and query information from separate objects

¢ Form information derived from a QRYDFN object that includes selection of a file
that is not defined on the system

¢ Query information derived from a QRYDFN object that includes a numeric con-
stant with a decimal point delimiter not indicated by the QDECFMT system value

Consider the following before using the STRQMQRY command instead of the
RUNQRY command.

Note: You may not get acceptable results or you may have to take certain actions
to ensure a successful outcome when using the STRQMQRY command.

e |f you use the STRQMQRY command without specifying ALWQRYDFN(*ONLY)
and there is already a QMQRY or QMFORM with the same name in the specified
library, information for running the query or formatting the report is taken from
that object instead of the QRYDFN object.

¢ Since the query database does not support member specification, you may need
to use file overrides to use the intended member instead of the *FIRST member
(refer to the OVRDBF command in the CL Reference).

* Both commands have OUTFILE parameters, but the STRQMQRY command has
no *RUNOPT default. If you intend to use output that is not displayed, specify
OUTFILE and related parameters for STRQMQRY since values are not defaulted
from the QRYDFN object.

¢ |f the QRYDFN object is a dependent query, the dependent values must be set at
run time. For RUNQRY, the Record Select (RCDSLT) parameter must be used.
The RCDSLT parameter causes the Select Records prompt to be displayed so
that you can specify the dependent values. For STRQMQRY, dependent value
names are converted to global variables that can be set using the SETVAR
parameter. The query can be run in batch mode if you use the SETVAR param-
eter to specify values for all the global variables.

In interactive mode, the STRQMQRY command uses INQUIRY messages to
prompt for any global variables not previously set using the SETVAR parameter.

¢ RUNQRY command processing makes dynamic adjustments for changes made to
a file definition since the query was saved. STRQMQRY command processing
does not. The QRYDFN object may need to be saved again before the
STRQMQRY command is used.

¢ |If the RUNQRY result depends on any of the following, the result of running the
STRQMQRY command will probably be unacceptable. Figure 8-1 on page 8-4
shows the RUNQRY action and the potentially unacceptable system action taken
for each item when the STRQMQRY command is run.

Chapter 8. Using Query/400 Definition Information 8-3

8-4

Figure 8-1 (Page 1 of 2). RUNQRY and STRQMQRY Actions When Converting a

QRYDFN

RUNQRY Action

System Action When Using
STRQMQRY

Dynamic resolution of field selections

The saved field list is used

Data from a file with multiple formats

No output is produced

Unmatched join with primary file

A matched join is performed

Matched join with primary file

A matched join is performed

Control of expression scale and preci-
sion

Defaults are used for calculations

More than 255 field and extra function
selections

Only the first 255 field selections are
used

LIKE test of result expression with || or
SUBSTR

No output is produced

Non-EBCDIC collating

No alternative collating is performed

Decimal position override with default
numeric editing

The default decimal position is used

Length override n to format n digits or
characters

The default number of digits or charac-
ters is used

Length override with default numeric
editing

The default length is used

Length override with default column
heading

The default length is used

Edit override with default Decimal Posi-
tion

No decimal positions in an edited
number

Date and time numeric editing override

Run-time defaults are used

Non-SAA numeric editing override

SAA edit code K is used

Multiple summary functions for field in
same column

Separate column for each field
summary function is used

Omission of break field column

Break field column is not omitted

Summary function for break field

Separate column added to hold
summary function values

Break text for non-SQL summary when
first or only column has summary

No break text is displayed

Final text for non-SQL summary when
first or only column has summary

No final text is displayed

Summary only output

Detail records are not omitted

Multiple breaks defined

Detail records are not omitted

Single break defined, but level 0 summa-
ries not omitted

Detail records are not omitted

Result field used as break field

Detail records are not omitted

Line wrapping

Line wrapping is not used, parallel
printer files are produced

Cover page text

No cover page is printed

Page text wider than 55 characters

Page text is truncated

AS/400 Query Management/400 Programmer’s Guide

|
l
|
l
I
I
I

Figure 8-1 (Page 2 of 2). RUNQRY and STRQMQRY Actions When Converting a
QRYDFN
System Action When Using
RUNQRY Action STRQMQRY
Truncation of numeric overflow Numeric overflow is rounded
Ignoring of decimal data errors Errors are not ignored, data is not
repaired

QRYDFN Conversion Considerations for Satisfactory Results

The information derived from a QRYDFN may be unacceptable for use as a QMQRY
or QMFORM. The report or data record output produced from it could have obvious
defects, or it could be so different from the report or data record output produced by
Query/400 that it cannot be used for the same purpose. On the other hand, you may
be able to eliminate unacceptable differences by working on the Query/400 defi-
nition to make simple adjustments, such as:

* Condensing text
* Removing underline characters from column headings
* Increasing the space before the value for the first report field

¢ Specifying length and decimal position overrides for formatting numeric result
fields

Report Differences

The following figures show sample report pages contrasting a printed report
produced by Query/400 with a printed report produced by query management from
information derived from the same Query/400 definition. This definition was picked
to show what can happen when derived information is used, and is not necessarily
representative of what you can expect from most of your Query/400 definitions.

Chapter 8. Using Query/400 Definition Information 8-8

Page

/\/

Commission
as percent of salary

END OF REPORT

1 kkkkkhkkkkkkkhhkkhhhkdkk

.00
.00
.00
.00

.01
.02

.00

08/11/90 12:25:21
DEPT SALARY COMM
10 19,260.25 .00
20,010.00 .00
21,234.00 .00
22,959.20 .00

Dept 10 summary information
MIN 19,260.25 .00
MAX .00
15 12,258.50 110.10
12,508.20 206.60
16,502.83 1,152.00
20,659.80 .00
Dept 15 summary information
MIN 12,258.50 .00
MAX 1,152.00
Year 1988 - salary and commission survey
MIN 12,258.50 .00
MAX 1,152.00
* % %

* % %

*¥kkdk TBM Confidential

IN T

Figure 8-2. Query/400 Output before Adjustment

8-6 AS/400 Query Management/400 Programmer’s Guide

INT
Commission
as percent of salary
MIN MIN MAX
DEPT SALARY COMM COMM
10 19,260.25 .00 .00 .0000000000000000000000000
20,010.00 .00 .00 .0000000000000000000000000
21,234.00 .00 .00 .0000000006000000000000000
22,959.20 .00 .00 .0000000000000000000000000
Dept 10
19,260.25 .00 .00
15 12,258.50 110.10 110.10 .0089815230248399070033038
12,508.20 206.60 206.60 .0165171647399306055227770
16,502.83 1,152.00 1,152.00 .0698062089956692276415620
20,659.80 .00 .00 .0000000000000000000000000
Dept 15
12,258.50 .00 1,152.00
Year 19
12,258.50 .00 1,152.00
Page 1 khkkkhkkhhkkhkkkkkkhkkkkkkkk IBM
08/11/90 11:58:42 1
INENININ T

Figure 8-3. Query Management Output before Adjustment

The following figures show sample report pages contrasting the printed output from
query management with that from Query/400 after the following minor changes were
made to the QRYDFN object:

¢ Space before first column overridden to 3

Length 2 and dec pos 2 specified for the result field size

¢ Underscores removed from column heading text

Break and final text condensed

Page footing text condensed and &PAGE variable removed

Chapter 8. Using Query/400 Definition Information ~ 8-7

08/11/90 12:25:21
DEPT SALARY

10 19,260.25
20,010.00
21,234.00
22,959.20

Dept 10 :
MIN 19,260.25
MAX

15 12,258.50
12,508.20
16,502.83
20,659.80

Dept 15 :

MIN 12,258.50
MAX

Year 1988:

MIN 12,258.50
MAX

COMM

110.10
206.60
1,152.00
.00

.00
1,152.00

.00
1,152.00

/\/

Commission
as percent of salary
.00
.00
.00
.00

.01

.07
.00

*** END OF REPORT * **

kkkkkkkkkkkkkkkkk IBM Conf1dent1a] kkkdkkkkkhkkhkkkik

IN

Figure 8-4. Query/400 Output after Adjustment

8-8 AS/400 Query Management/400 Programmer’s Guide

INAINININININININNIN
MIN MIN MAX Commission
DEPT SALARY COMM COMM as percent of salary
o 10 19,260.25 ___-_?96- .00_ _________'______-féé
20,010.00 .00 .00 .00
21,234.00 .00 .00 .00
22,959.20 .00 .00 .00
oept 100
19,260.25 .00 .00
15 12,258.50 110.10 110.10 .01
12,508.20 206.60 206.60 .02
16,502.83 1,152.00 1,152.00 .07
20,659.80 .00 .00 .00
bept 150
12,258.50 .00 1,152.00
Year 1988: i N
12,258.50 .00 1,152.00
khkkkkkkkkkkkkkkk IBM Confidenti a] kkkkkkkkkkkkhkkkk
08/11/90 12:25:04 1
INANNNNNNINNINT

Figure 8-5. Query Management Output after Adjustment

Figure 8-6 on page 8-10 and Figure 8-7 on page 8-11 show sample report pages
contrasting a printed report produced by Query/400 with a printed report produced
by query management from information derived from the same Query/400 definition.
This definition was picked to show what can happen when derived information is
used, and is not necessarily representative of what you can expect from most of
your Query/400 definitions.

Chapter 8. Using Query/400 Definition Information 8-9

/\/
DEPT SALARY COMM Commission

as percent of salary

10 19,260.25 .00 .00
20,010.00 .00 .00
21,234.00 .00 .00
22,959.20 .00 .00

Dept 10 summary information
MIN 19,260.25

MAX .00 .00

15 12,258.50 110.10 .01
12,508.20 206.60 .02
16,502.83 1,152.00 .07
20,659.80 .00 .00

Dept 15 summary information

MIN 12,258.58

MAX 1,152.00 .07

Year 1988 - salary and commission survey

MIN 12,258.50

MAX 1,152.00 .07
*%** END OF REPORT * * =
Page
/\/

Figure 8-6. Query/400 Output before Adjustment

8-10 As/400 Query Management/400 Programmer’s Guide

ANANNNNNNNNNNNNNNNNNNNNNNNNNNANNNNNNNN

Dept 1

15

Dept 1

Year 1

Page

/\/

Commission
as percent of salary

SALARY COMM
19,260.25 .00 .0000000000000000000000000
20,010.00 .00 .0000000000000000000000000
21,234.00 .00 .0000000000000000600000000
22,959.20 .00 .0000000000000000000000000
19,260.25 .00 .0000000000000000000000000
12,258.50 110.10 .0089815230248399070033038
12,508.20 206.60 .0165171647399306055227770
16,502.83 1,152.00 .0698062089956692276415620
20,659.80 .00 .0000000000000000000000000
12,258.50 1,152.00 .0698062089956692276415620
12,258.50 1,152.00 .0698062089956692276415620
Page 1 FkkkkFrhhhkhhhhhrkhrhkhrrhhhbrdx IBM

Date: 1990-01-29

Figure 8-7. Query Management Output before Adjustment

Figure 8-8 on page 8-12 and Figure 8-9 on page 8-13 show sample report pages

contrasting the printed output from query management with that from Query/400

after the following minor changes were made to the QRYDFN object.

Space 4 before first column instead of 0.

Specify length 2 and decimal position 2 for the result field size.

e Remove underscores from column heading text.

Condense break and final text.

Condense page footing text and remove &PAGE variable.

Chapter 8. Using Query/400 Definition Information

8-11

/\/
03/18/90 10:01:3

DEPT SALARY COMM Commission
(and minimum) (and maximum) as percent of salary
(and maximum)

10 19,260.25 .00 .00
20,010.00 .00 .00
21,234.00 .00 .00
22,959.20 .00 .00

Dept 10 :
MIN 19,260.25
MAX .00 .00

15 12,258.50 110.10 .01
12,508.20 206.60 .02
16,502.83 1,152.00 .07
20,659.80 .00 .00

Dept 15 :

MIN 12,258.50

MAX 1,152.00 .07
Year 1988:

MIN 12,258.50

MAX 1,152.00 .07

**%% END OF REPORT **x

INANNNNNNNNNNNNNNNANNNNNNINININININNINNNNNNNN

Figure 8-8. Query/400 Output after Adjustment

8-12 As/400 Query Management/400 Programmer’s Guide

INNNNNNNANNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Commission
SALARY CoMM as percent of salary
DEPT (and minimum) (and maximum) (and maximum)
10 19,260.25 .00 .00
20,010.00 .00 .00
21,234.00 .00 .00
22,959.20 .00 .00
Dept 10:
19,260.25 .00 .00
15 12,258.50 110.10 .00
12,508.20 206.60 .01
16,502.83 1,152.00 .06
20,659.80 .00 .00
Dept 15:
12,258.50 1,152.00 .06
Year 1988:
12,258.50 1,152.00 .06

01/01/90 00:00:00
/\/

Figure 8-9. Query Management Output after Adjustment

If you intend to start using query management regularly to run a particular
Query/400 definition, you should do the following to ensure satisfactory results:

1. Use the Analyze Query (ANZQRY) command and read any diagnostic messages
produced, including message help.

2. Use the STRQMQRY command and inspect the output carefully. You may catch
undiagnosed defects, or you may discover that some ANZQRY diagnostic mes-
sages can be disregarded.

3. Use the WRKQRY command to display the QRYDFN object, and check the defi-
nition displays for deviations from the compatibility guidelines. Use the Change
option to make any adjustments you think will improve the outcome.

4. Take appropriate action regarding ANZQRY diagnostiq messages that do not
involve changing the QRYDFN object itself.

The following sections describe in more detail how defects and unacceptable differ-
ences can be detected and avoided.

Analyzing a QRYDFN

The Analyze Query (ANZQRY) command is used to inspect a Query/400 definition to
find processing problems. This command returns diagnostic messages that detail
the potential differences between Query/400 and query management’s use of infor-
mation derived from the analyzed QRYDFN object. A completion message shows
the highest severity of the potential differences diagnosed. If this code is greater
than 10, check the message help for warnings about easily overlooked and possibly

Chapter 8. Using Query/400 Definition Information ~ 8-13

serious effects of the system action stated in the message. For example, ignoring a
collating sequence choice could change the outcome of a character comparison
used for controlling record selection or sorting.

Using the ANZQRY command has the following limitations:

* It checks some information about the specified files but ignores any database file
override in effect (see the OVRDBF command), and performs no level check.
There is no verification that the information saved in the QRYDFN object is still
comparable to that found in the file definitions.

° It does not predict errors that could occur during conversion, such as a SELECT
statement that grows too large.

° It does not predict errors that could occur during run time, such as the following:

— SQL syntax errors

— SQL data errors (missing fields, mismatched type comparisons)
— Excessive formatted report width

— lInappropriate summary function or editing for field data type

— ltignores the following differences between Query/400 and query manage-
ment:

- Loss of translatable FINAL TOTALS heading text

- Loss of leading blanks in column heading lines

- Different alignment of oversized column headings (centered on axis)

- Underscores treated as line break characters

- Break or final text kept from extending into the space before the summary
- Break or final text kept from extending past last data column

- Different summary types on the same line

- Different defaults for result field size

- Different rules for calculation scale and precision

- Different values from calculations involving certain data types

(ANZQRY returned a code of 0 for the QRYDFN object from which query
management derived the query and form information for producing the
sample report shown on page 8-7.)

- Severity codes do not take into account the number of messages gener-
ated by running the ANZQRY command and may be misleading because a
diagnosed condition might not be that severe a problem for the particular
QRYDFN analyzed. For example, the fact that decimal data errors will no
longer be ignored may or may not be of consequence for a particular
query, but is diagnosed as a severity 30 problem even for a query with no
numeric fields.

Inspecting the Output

In some cases, the only way of detecting defects and unacceptable differences is to
inspect the output. This may also be the only way to evaluate the actual severity of
a diagnosed problem using the ANZQRY command. The Start Query Management
Query (STRQMQRY) Query Management/400 command and the Run Query
(RUNQRY) Query/400 command can be used to get comparable output.

Look for the following differences when running a derived query:

* Records not coming from the *LAST member or the member specified by name
Omission of unmatched records

Loss of columns or different column order

Columns added for extra summary functions

Different record order or selection set

8-14 Asr400 Query Management/400 Programmer’s Guide

Different length or precision of result field data columns

Different values or unexpected numeric overflow in result fields
Different values or unexpected numeric overflow of sums or averages
Divide by zero errors for numeric calculations

Look for the following differences when displaying or printing a report using a
derived form:

Text truncation

Unresolved text insertion variables

Editing changes

Report column width changed

Heading or footing alignment changed

No line wrapping

No cover page

No page number or date and time information in page headings

Applying QRYDFN Option Guidelines

Many potential problems can be avoided by following guidelines when creating or
changing a Query/400 definition intended for query management use. Use the Work
with Query (WRKQRY) command to create a new QRYDFN object or change an
existing object, and make sure the option fields contain values recommended by the
following query management compatibility guidelines:

Specify file selections

— Select only files with single formats
— Select only the *FIRST member

Specify type of join
— Use only matched record joining (no primary file)
Define result fields

— Specify the value SUBSTR to refer to the result field SUBSTR in an
expression

— Use size overrides only for numeric column formatting control

— Use a size override if the expression involves division

— Use ’_’ in a column heading only where you want the line to break text

— Do not use column headings with data alignment dependencies

— Do not use multiple-line figures in column headings

— Do not use a line for column heading separator characters

— Use SUBSTR (not a formatting override) to reduce character field size

Select and sequence fields

— Make specific field selections
— Do not select more than 255 fields

Select records

— Specify the value SUBSTR to refer to the result field SUBSTR as a test value
— Do not use LIKE to test a result field defined using || or SUBSTR
— Use dependent value syntax where a global variable is desired

Select sort fields
— Do not sort on a character field uniess EBCDIC sequence is acceptable
Select collating sequence

— Select EBCDIC sequencing

Chapter 8. Using Query/400 Definition Information ~ 8-15

* Specify report column formatting

— Allow space for break or final text to the left of summaries

— If overriding the length of a file field, override the column heading also
— Use ’_’ in a column heading only where you want the line to break

— Do not use column headings with data alignment dependencies

— Do not use multiple-line figures in column headings

— Do not use a line for column heading separator characters

— Do not omit break fields

— Override editing when overriding numeric file field size

¢ Define numeric field editing
— Use only the edit code or numeric editing choices
¢ Specify edit code

— Use only the J and M edit codes
— Do not use the modifier for the asterisk fill option
— Do not use the modifier for a floating currency symbol with edit code M

e Describe numeric field editing

— Use only a description that can be converted to an SAA edit code
— Do not request suppression of zero values

— Do not request asterisk fill

— Do not request a single leading zero

¢ Select report summary functions

— Do not request more than one summary function per field unless you want
columns added for the extra functions

— Do not request a summary function for a break field unless you want a
column added for the summary function

— Do not request a summary function other than COUNT for a result field that is
not calculated from a file field

— Do not request MIN or MAX for a character field wider than 255

* Define report breaks

— Do not break on a result field if you want detail records to be omitted

— Define only one break level if you want detail records to be omitted

— Do not break on a combination of fields wider than 255 if you want detail
records to be omitted

* Format report break

— Omit level 0 summaries if some other level is defined and you want detail
records to be omitted

— Do not use break text if the first report field has a summary function unless
detail records are to be omitted

— Use any report field name for a break text variable

— Define final text to replace the FINAL TOTALS default

* Select output type and output form

— Do not define a query for producing summary-only database file output

— Put run-time device options in CL commands or procedures

— Use line spacing if desired

— Do not define cover page text unless the output will be final summaries only
— Do not use line wrapping

— Do not use more than 55 characters for page heading or footing text

— Make sure no text extends beyond the last data column

— Use any report field name for a page text variable

8-16 AS/400 Query Management/400 Programmer’s Guide

¢ Specify processing options

— Do not request truncation of numeric overflow
— Do not request ignoring decimal data errors

Conversion Details

The following figures show the relationship between the WRKQRY displays used to
prompt for query definition specifications and the various sections of query manage-
ment query and form objects. In the figures, dotted lines connect display prompts
with object sections built from prompt responses. Dotted lines extending to the right
margin represent WRKQRY display choices that are ignored. Dotted lines extending
from the left margin represent query management functions that cannot be defined
through the prompted interface.

Some SQL functions that query management supports and that are not represented
in the figures, such as sublists and certain scalar functions, are not available
through the prompted interface. Query management uses one of two conversion
modes, depending on whether or not the QRYDFN object is suitably defined for
using SQL GROUP BY or column functions to omit detail records. Connections that
apply only to SQL summary mode are marked with an asterisk at the left.

Chapter 8. Using Query/400 Definition Information ~ 8-17

Specify File Selections

- File, Library..c.oeeeeeiiniininnnn.. SELECT FROM
=111 o
L1 1 S
e 2 I - 13 SELECT FROM

SELECT 1list, ORDER BY, GROUP BY
(used as Field qualifier)
Specify Type of Join
B2 L= & 1 1
Specify How to Join Files
- Field__Test_ Field................... SELECT WHERE

Define Result Fields
- Field__....(if no column heading).... Column: Column heading, Width
- Expression__.......ooiiiiiiiiiiina.., SELECT 1list, WHERE
(substituted for Field)
Column Heading__.(if no override).... Column: Column heading, Width
Len ittt e, Column: Edit, Width
S Lo Column: Edit, Width

1

Select and Sequence Fields
- Seq__Fieldiviiiiiiiiiiiiniiiinnnnnnn, SELECT 1list

Select Records
- AND/OR_Field__Test_ Value........... SELECT WHERE

Select Sort Fields
- Sort Prty A/D_Field........cco..... SELECT ORDER BY

Select Collating Sequence
- Collating sequence Option......ivieiiiennirenneeenennnneeennneeenns
= Table, LIy .ttt ittt ittt et e
Define Collating Sequence
R L=L =T ol = 1 T U

Specify Report Column Formatting

2 T I
.. Column: Seq
.. Column: Datatype

- Column Spacing__......ccveviininnnnnn. Column: Indent

- Column Heading__..(override only).... Column: Column heading, Width

-Llen_ ..., (override only).... Column: Usage, Edit, Width

(0) (OMIT)

-Dec__.iiiiiiia.. (override only).... Column: Edit, Width

(#) (#
- Edit..oooiiiiae, (override only).... Column: Edit, Width
(Untransformable numeric editing) (K)
Define Numeric Field Editing

= BT OPtTON. c .ttt i i i e e e i e i e e e
Describe Numeric Field Editing

- Decimal point, and so on...cvvevniiinnnnnnn. Column: Edit, Width

(Transformable description) (matched SAA code)

Figure 8-10. Correllation between WRKQRY Displays and Query Management Objects

8-18 As/a00 Query Management/400 Programmer’s Guide

Describe Date/Time Field Editing

- Date/time separator........coiivieinienranenn

Specify Edit Code

- Edit code, Optional modifier......... Column:

(3)
(39)
M)
Specify Edit Word

B T« I A) oo
- Edit word for summary total.............c.ovns

Select Report Summary Functions

- Options__Field.....covvvvveennnnnnnn, Column:

(1=Total)
(2=Average)
(3=Minimum)
(4=Maximum)

(5=Count)
or
* Options__Field........covvviiiinnnnn, SELECT
(1=Total)
(2=Average)
(3=Minimum)
(4=Maximum)
(5=Count)
Define Report Breaks
- Break level__Sort Prty_ Field........ Column:
(1-6)
and
* Break level__Sort Prty_ Field........ SELECT
(1,2,3,4,5, or 6)
.. SELECT
Format Report Break (level 0)

.. Final

- SUpPress SUMMArieS....ceeeeaneennenns Final:
(Y=Yes, N=No (if text present))

.. Final

- Break text.....oveiiiieiiiiiiieianann Final
(1st and only line)

Format Report Break (level 1-6)

- Skip tonew page.......coiiiuaieiaian Break:
.. Break
.. Break
.. Break
.. Break
.. Break

.......................

Edit, Width
(k)
(D)
(L)

.......................

.......................

Usage, Width
(SuM)
(AVERAGE)
(MINIMUM)
(MAXIMUM)
(COUNT)

«..(FIRST)
...(LAST)

list column function
(SUM(Field))
(AVG(Field))
(MIN(Field))
(MAX(Field))
(COUNT(*))

Usage
(BREAK1-BREAKS)

Tist, GROUP BY
HAVING

New page for final text
Put final summary at line
(NONE, 2)
Blank lines before footing
Final footing text
(Line 1)

...{Lines 2-12)

New page for heading
Repeat column heading
Blank Tines before heading
Blank lines after heading
New page for footing

Blank lines before footing

Figure 8-11. Correllation between WRKQRY Displays and Query Management Objects

Chapter 8. Using Query/400 Definition Information 8-19

.. Break: Blank lines after footing

or
* ... (if no text present).............. Break: Break lines after footing
(0)
- Suppress SUMMArieS......ceeeeveenenaan Break: Put summary at line
(Y=Yes, N=No (if text present)) (NONE, 2)
e teeeeeenctaenstrtsatereraannne Break: Put summary at line
(NONE)
... Break: Break heading text
or
* Break text..oeeiiiiiiiiiiiiiiiiiennn. Break: Break heading text
(1st and only Tline) (Line 1)
.. (Lines 2-5)
- Break text...ooveiiiiiiiiiiiiiiiiin, Break: Break footing text
(1st and only line) (Line 1)
.. (Lines 2-5)
or
K ittt eteteeeaeeeaeeneerantannennnnanns Break: Break footing text
Select Output Type and Output Form
Y171 o 1T o -
= Form of oUtpUE. . cunnee i i i it it r et ittt i
= Line WrapPiNg. e et ettt ittt et ittireiatetteeeteaaaa e
Define Printer Output
T 20 1111 RN
0L T3
B 1 £ o A T
S =11« T
- Line spacingccvvieviiiiiennnnnn. Options: Detail Tine spacing
(1-3) (1-3)
.. (4)
...... Ceeereessecntitestaasssssaasssss.. Options: Outlining for break columns
or
SRR Options: Outlining for break columns
(N)
.. Options: Default break text
or
E it tteeteeeertttiatacanannnnannnnnns Options: Default break text
(N)
.. Options: Column wrapped lines kept
.. Options: Column heading separators
................................ vesese.. Options: Break summary separators
or
K ittt tietettttteeeeeanninnnnans Options: Break summary separators
(N)
........................... ceeeeeeesss.. Options: Final summary separators
or
K ittt teteereneaacanaaacesnsenenannnns Options: Final summary separators
(N)
= Print definition. .ottt ittt ittt ittt
Define Spooled Output
= Spool the oULPUL. ... entr ettt ittt iiiieeieteennnnnnananaenaannnns
e L 11 A1« T
B ¢ =1
5L+
Specify Cover Page
= PPN COVEI PAGE. i iitttiiiter et eeteseenoneeeanoseeesneosncnesans “es
- Cover page teXt (UP £0 4 THMeS).ueeeeereeeeneneeneeneeneneenneneonens
or
* Cover page text (for final summary).. Page: Page heading text
(lines 1-4) (Lines n to n+3)

Figure 8-12. Correllation between WRKQRY Displays and Query Management Objects

8-20 As/400 Query Management/400 Programmer’s Guide

Specify Page Headings and Footings

.

.

.

Print standard page headings........ Ceereiieaeas Ceetetreeteiereanans
...................................... Page: Blank lines before heading
...................................... Page: Blank 1ines after heading
Page heading.....ccevveinninennnnenns Page: Page heading text

(Tines 1-3) (Lines 1-3)
.. (Lines 4-5)
...................................... Page: Blank lines before footing
...................................... Page: Blank lines after footing
Page footing......covvvvevnneennnennns Page: Page footing text

(1st and only line) (Line 1)
.. (Lines 2-5)

Define Database File Qutput

File, Library, Member...coiieiiieiieiiirereierenerncenetoseancsnnanns
Data 1N File.eeureriieaiiiiiiiiiieeeionnnssecsnsecanneasansasannns
Authority (for new file)...veeriiiiiiiniiiiiinieeneeeerensnennns
Text (For New FiTe).uueeee i ieeireeeeeaeeeeeesesannsssnnssnsscssannns
Print definition.....eieiiiiiiiiiieiiiriieeeesierncenennencesacannes

Specify Processing Options

USE POUNAING. . evrseeeeeseeeereesosssessosssesesssssesannssssnsscnnnss
Ignore decimal data ErrOrS...cvvieeiiiitiiiiiiieeeensseannsssnnnnannns

Figure 8-13. Correllation between WRKQRY Displays and Query Management Objects

Most of the transformations represented in the previous figures are straightforward.
The following actions may not be expected, and may need to be understood to get
the best results:

Columns are added to the SELECT list as needed so that each summary function
selected for a field has a separate column (unless summaries are completely
omitted from the report). Attributes from the original field are carried over to
each added field.

Detail columns are omitted from the SELECT list if the output form is summary-
only.

SQL summary mode is used for detail record omission if the output form is
summary-only unless one of the following applies:

— More than one break level is defined
— A break level is defined and final summaries are not omitted
— A result field is used as a break control field

Every character in an expression or test value is transformed to uppercase
unless it is in a string constant. This includes the characters in a name enclosed
in quotation marks.

SQL reserved words used as field names are placed in apostrophes in a derived
SELECT statement.

The corresponding expression is substituted for each result field name which
would otherwise appear in a SELECT list or record selection test. Substitution is
recursive, since result field names can be used in the expressions for other
result fields. Column numbers are substituted for result field names in the
ORDER BY clause.

If there are any join tests, these are used to start the WHERE clause and any
record selection tests are separated by the AND keyword.

Chapter 8. Using Query/400 Definition Information 8-21

e Dependent values in record selection tests are converted to global variables.
For example: The dependent value :t01.”collection” is converted to
&TO1_COLLECTION.

Valid decimal point delimiters are converted to the delimiter indicated by the
QDECFMT system value in numeric constants in a derived SELECT statement.

* SAA database processing truncates decimal positions after division of unscaled
values. The value calculated for 2/3 is 0, for example. For this reason, the
decimal point delimiter indicated by the QDECFMT system value is put with
every number without a decimal point delimiter in expressions in a derived
SELECT statement.

The column heading for a column is left blank unless there is a column heading
override for it; the column will hold expression values (the result field name is
the default if no heading is defined), or the column will hold summary values (the
program will create a heading).

A column heading override or default is handled in the following way:

— *NONE, meaning no column heading, is transformed to a single underline
character, or, for a column that will hold summary values, to the caption
Query/400 uses for the values.

— Otherwise, a column heading string is built by stripping leading and trailing
blanks from each line up to and including the last non-blank line, then con-
necting the resulting segments with single underline characters. Underline
characters in the heading text are not replaced with substitute characters. A
single line heading such as 1_9_9_0 is transformed with no changes and
causes 4 lines of heading when the derived form information is used.

— The heading for a column intended to hold summary values is built by con-
necting the column heading string to the caption Query/400 uses for the
values. If this results in a string longer than 62 characters, the string is trun-
cated.

— lIfthere is no heading string to connect to the summary function caption, the
field name is used. Any heading defined for the field as part of a file defi-
nition is ignored.

¢ The character part of the Edit value is left blank if any of the following occur:
— The column will hold only COUNT summary function values.

— There is no size override unless the column is result field for which a size
has been specified.

— There is no override editing defined, the column is not a result field, and
there is a numeric decimal positions override.

The value C is used if the decimal positions override indicates a character field.
The value K is used for a numeric field if no closer match to an SAA edit code
can be determined for the edit override, or if there is no override and the column
is for a result field.

The following rules apply when trying to determine an SAA edit code match:

— Only the type of override editing indicated by the Edit option choice is consid-
ered.

— The effect of system defaults on RPG edit code editing is disregarded; J, J
with currency symbol, and M are always converted to K, D, and L.

8-22 As/400 Query Management/400 Programmer’s Guide

— Edit description choices not involved in the actual editing (a left or right cur-
rency symbol when no currency symbols are to be used, for example) are
ignored when comparisons are made.

¢ The numeric part of the Edit value is left blank if the character part is blank or C,
or if the number of decimal positions to be used cannot be determined from a
decimal positions value saved as an override (with a non-zero length override)
or as part of the definition of a resuit field.

* The Width value for a column is left blank unless the information saved in the
QRYDFN object completely specifies the width requirements for everything that
has to appear in the column. A column formatting length override can influence
the Width, but determines the number of digits or decimal positions formatted
only when nothing else in the column (such as a heading segment or count
summary value 9,999,999) is wider than the edited data and the override length
is smaller than the data width assumed by database processing.

¢ Cover page text specified for an SQL summary report and defined to show only
final summaries is used as extra page heading text. Left alignment is forced and
line numbers are assigned starting from 1 if there is no page heading text speci-
fied, otherwise starting from 2 plus the number of page heading text lines.

¢ Final text for an SQL summary report is left-aligned and appears below any
summary values.

¢ Page, break, and final text are adjusted in the following ways:
— Strings of consecutive blanks are compressed to single blanks.

— Field referencing insert variables are converted to column referencing vari-
ables, and special variables (&time, &date, &page) are converted to all
uppercase characters. Strings starting with & are recognized as text insert
variables only if the character after the & is not a blank or a numeric digit,
and only if ended by the end of text or by one of the following: blank, slash,
colon, dash, ampersand, underscore, or DBCS shift out. All selected fields
and extra summary function selections are considered (in report order) when
converting a field reference to a column reference.

— If the resolved text is longer than 55 characters, it is truncated at the blank or
ampersand in the highest of the first 56 positions. If no blank or ampersand
is found, the text is not used.

— DBCS strings left open due to truncation are closed.

Creating Query Management Objects from QRYDFN Objects
If you want to add query- or form-related function that is not available through the
Query/400 prompted interface, you have to use information derived from the
QRYDFN object to create a query management object of that type.

Converting QRYDFN Objects
The following steps represent a typical way that a QRYDFN could be permanently
converted to a query management form and a query management query:

1. Create separate source file members, one for externalized queries and one for
externalized forms.

2. Use the Work with Query (WRKQRY) command to change and save the resolved
QRYDFN object if there have been any changes to the file definitions referred to.
You could also use this command to change the object to improve the conversion
or to add function permitted but not supported by Query/400.

Chapter 8. Using Query/400 Definition Information 8-23

3. Use query management CL or CPi commands (RTVQMQRY or EXPORT QUERY,
for example) to extract the usable information.

4. Edit the externalized objects if you want to add functions not available through
the Query/400 prompted interface.

5. Use query management CL or CPI commands (CRTQMQRY or IMPORT QUERY,
for example) to create query management objects.

The following figure illustrates how a Query/400 QRYDFN is converted to a query
management query and a query management form.

Externalized
—RTVQMQRY— | SQL Query ——CRTQMQRY—>| Imported
QRYDFN QM Query
Original
Query
Imported
Externalized ——CRTQMFORM—|QM Form

—RTVQMFORM— | Encoded Form

Figure 8-14. Conversion Data Flow

The following figure is an example of how CL commands can be used to convert a
Query/400 QRYDFN object to query management objects.

Representative work...
QRY1 in MYLIB saved as
QRY1 in QTEMP on exit
from option 2 (Change)

Type command, press Enter.
» crtsrcpf qtemp/qqmqrysrc 91
» crtsrcpf qtemp/qgmformsrc 162
» wrkqry
> rtvgmqry qrylqry qtemp/qgmgrysrc qryl
» RTVQMFORM command completed using derived information.
> strseu gtemp/qgmgrysrc qryl
> crtgmqry qrylgry qtemp/qgqmgrysrc qryl
» rtvgmform qrylfrm qtemp/qgmformsrc qryl
> RTVQMFORM command completed using derived information.
> crtgmform qrylfrm qtemp/qgmformsrc qryl
===p

Representative editing...
library/object names in
FROM clause changed to
database.object names

Figure 8-15. Sample CL Command Sequence for QRYDFN Conversion

8-24 AS/400 Query Management/400 Programmer’s Guide

Adding SAA Function
The WRKQRY command can be used to define a function that is permitted but not
supported by Query/400, for example:

* &field insertion variables in page text

* &field insertion variables ended with ’_’

e Other than break field insertion variables in break or final text

¢ &column# insertion variables, ended with any nondigit character
The Start Source Entry Utility (STRSEU) command can be used to edit retrieved
source to add a function that cannot be defined using WRKQRY:

1. Retrieve the source from a QRYDFN object or a query management query
(QMQRY) or form (QMFORM) object.

2. Edit the source to add the desired function.

3. Then use the edited source to create a QMQRY or QMFORM object that can be
referred to in subsequent query management requests.

The following functions can be added to the type of source indicated:

Query source (a Structured Query Language (SQL) SELECT statement)
¢ DISTINCT records instead of ALL records

Selection of all fields using *

SAA naming conventions in the FROM clause

L[]

Column or scalar function as SQL expression or predicate test value

NOT as search condition qualifier
NOT IN and NOT LIKE predicate tests
GROUP BY and HAVING clauses

e Use of parentiieses with connectors, for example (... OR ...) AND (... OR ...)

Form source (encoded records)
e Character field editing (column wrapping)
¢ Different SAA edit codes for numeric editing
¢ Explicit column width control
* FIRST and LAST uses
* More than 9 break columns
* Resequencing in form definition
 Report area spacing (blank lines before and after)
e Summary line placement (on other than second break or final footing line)
¢ Break heading text
¢ Additional text lines (more than the AS/400 system allows)
o Text line alignment

e Control of framing (separators, default break text, outlining, and so forth)

Chapter 8. Using Query/400 Definition Information ~ 8-25

Refer to the SAA CPI Database Reference for detailed information about Structured
Query Language (SQL) syntax, and to the SAA CPI Query Reference for detailed
information about the encoded form layout.

Miscellaneous Considerations

Knowing some things about the differences between Query/400 and query manage-
ment may help you get better results from using information derived from Query/400
definition objects:

The form retrieved from a QRYDFN object may have blank column entries
causing errors when the form is used to create a QMFORM object.

The FROM clause in query source retrieved from a QRYDFN object uses system
naming conventions.

The default printer form width used by query management is smaller than that
used by Query/400. Similar reports may be produced for a report that Query/400
kept on one printer form width.

Queries defined for files created by other queries may not be usable with files
created by query management from information derived from these other
queries. This is especially likely if result fields are included in the output.

Dependent values in record selection tests are converted to global variables
which must be set to suitable values before a derived query is run. For example,
t01.cusnam can be set using the global variable name T01_CUSNAM in the
SETVAR parameter of STRQMQRY.

Query/400 cannot run a definition if an expression or value contains a decimal
point delimiter that is not recognized. Query management can run such a defi-
nition because valid decimal point delimiters are converted to the delimiter indi-
cated by the QDECFMT system value.

SAA database processing truncates decimal positions after division of unscaled
values. For example, the value calculated for 2/3 is 0. For this reason, conver-
sion processing makes sure each numeric constant in an expression contains a
decimal point delimiter. This causes the size of the expression column to
include 15 digits to the right of the decimal point. Expressions involving division
of unscaled numeric fields (no constants) will probably cause unexpected
results.

SAA database processing rules for double-byte character set (DBCS) data are
different from those applied for Query/400. Use of concatenated strings to test
other than open strings should be avoided.

Because form text that is too long is truncated, conversion processing com-
presses blank strings to allow as much space as possible for text.

8-26 As/400 Query Management/400 Programmer’s Guide

Appendix A. Message Descriptions

© Copyright IBM Corp. 1991

The following error messages are possible when working with query management
commands and functions:

FAILURE

SEVERE

SUCCESS

WARNING

The query management command issued failed, and processing stops.
A message is returned to the display station that details the reason for
the command failure and gives some possible solutions for correcting
the error.

A severe error occurred when query management attempted to
process the command issued, and all system function stops. A
message is returned to the display station that details the reason for
the error and gives some possible solutions for correcting the error.

The query management command issued processed successfully, and
data is available for use.

Query management encountered an error in the command or proce-
dure issued, but processing continues. The error is ignored, or system
defaults are used to correct the error. Check the error messages for
an explanation of the warning and what, if anything, you can do to
correct the error.

A-2 As/400 Query Management/400 Programmer’s Guide

Appendix B. Query Management Interface Example

This appendix shows an example of how you can use query management to create a
report. Sample RPG and COBOL programs are provided to show how to create a
procedure or program.

Producing a Report

Figure B-1 illustrates using query management to select data and produce a report
using predefined query management form (QMFORM) and query management query
(QMQRY) objects. Run the SAMP1 program to produce the report.

C
R Export
SAMP1 T Format
Program M
Q
R Source
QMQRY Y File
Query
Management
SAMP1F c SAMP1F
.I? Export
Q Format
g~ M €¢—
F
Report
P |(:() Source
QMFORM M File
N—_

RS3W007-0

Figure B-1. Overview of Using Query Management to Produce a Report

In the example shown in this appendix, the database file WKPAY exists on the
system and contains the following information: employee name, employee number,
weekly hours worked, and the hourly rate of pay. Before running the SAMP1
program, create a QMQRY object and a QMFORM object on the system. Do this by
first creating the source for the two objects in Query Management Query Source
(QMQRYSRC) and Query Management Form Source (QMFORMSRC) files respec-
tively. Then use the Create Query Management Query (CRTQMQRY) and Create
Query Management Form (CRTQMFORM) commands to import them to QMQRY and
QMFORM formats. Figure B-2 on page B-2 shows the data description specifica-
tions (DDS) for the WKPAY file.

© Copyright IBM Corp. 1991 B-1

*

* weekly payroll details

*

A UNIQUE

A R PAYR TEXT('Weekly Pay Record')
A EMPNO 5 COLHDG('Employee' 'Number')
A NAME 20 COLHDG('Employee' 'Name')
A HOURS 58 2 COLHDG('Hours' 'Worked')

A RATE 5S 2 COLHDG('Hourly' 'Rate')

A WKAMT 5§ 2 COLHDG('Weekly' 'Pay')

A K EMPNO

Figure B-2. Data Description Specifications for WKPAY File
Figure B-3 shows the query used in the example:

SELECT NAME, HOURS, RATE, WKAMT FROM BPLIB/WKPAY
ORDER BY NAME

Figure B-3. Query Source Select Statement

Note: The maximum length of this source file is 91 characters (with line number
equal to 6 characters, date equal to 6 characters, and data equal to 79 char-
acters). The SQL statement is organized to conform to AS/400 standards,
since the option to use *SYS is specified in the START query command
issued by the sample program.

Figure B-4 shows the results of running the SAMP1 program.

DATE: 11/21/89 WEEKLY PAY REPORT PAGE: 1
HOURS HOURLY PAY
EMPLOYEE NAME WORKED RATE AMOUNT
ANDERSON, W 38.50 6.23 160.00
COLLINS, R 41.50 5.40 400.00
GREEN, C 40.00 7.10 300.00
SMITH, T 42.00 5.30 200.00

TOTAL 1,000.00

Figure B-4. Report Results for SAMP1

Sample Programs

The sample programs provided in RPG (Figure B-5 on page B-3) and COBOL
(Figure B-6 on page B-5) perform the same functions. The programs process the
WKPAY file by reading one record at a time, calculating the weekly pay amount, and
then updating the file with the calculated information. When all the records are
updated, query management is started with a call to the interface program
QQXMAIN and passes the START command and the communications area. The
START command specifies that the interface session uses system naming con-
ventions (*SYS) and not the default (*SAA).

Perform the query by calling the callable interface and passing the RUN command.

Print the results using the PRINT command. Use the EXIT command to end the
interface, and end the program with control returning to the calling program.

B-2 AS/400 Query Management/400 Programmer’s Guide

When passing query management data to the interface, it is necessary to pass the
lengths of commands and parameters in integer (binary) format. Structures have

been set up in the program to allow data to be passed in this format.

A module containing the communications area is included in the program during

compilation. Use this to communicate the status of operations between query man-

agement and the user program. The interface program name and standard field
names for the query status are also defined in this include module. Use these
names whenever required in the application program to allow for the transfer of
query applications between SAA systems.

Sample RPG Program
Figure B-5is a sample RPG program to process the WKPAY file.

Y T R T R Y L e e e S SR R R e Rt

SAMPLE 1 RPG PROGRAM USING QUERY INTERFACE

1) Include member DSQCOMMR contains the communications
area to be passed to the query management interface.

2) The WKPAY weekly payroll details are read and the hours
worked are multiplied by the hourly rate to calculate
the weeks pay. The file is then updated with the weekly
pay amount.

3) Once all the records in the WKPAY file are updated then
the interface is started and a query report

printed using the just updated file.

* ok %k % ¥ F F ¥ X ¥ ¥ X X *
* % Ok X ¥ X F X ¥ X X X ¥ *

Fhkkkhkhhkhkhhkkdhkhhkhhkrhkhhhhhkhkdhhkdhhhhrrkdkdrdrdrrdrdrdkdrhkrdhkix

H

FWKPAY UF E DISK
*

E COM 1 425 interface cmds
*

I DS

I B 1 40BIN1

I B 5 80BIN2

I B 9 120BIN3

I B 13 160BIN4

1/COPY QRPG/QIRGINC,DSQCOMMR
*

* Update the Weekly Pay file with weekly earnings:

*

C *IN50 DOUEQ'1!

C READ WKPAY 50 EOF

C N50 HOURS MULT RATE WKAMT H calculate pay

C N50 UPDATPAYR update pay file
C END

* ensure all

C FEOD WKPAY changes done

Figure B-5 (Part 1 of 2). Sample RPG Program

Appendix B. Query Management Interface Example

B-3

* in storage

* Start the query interface session:
*

C CALL DSQCIR

C PARM DSQCOM comms area

C PARM 5 BIN1 command length
C PARM CoM,1 START

C PARM 1 BIN2 # keywords

C PARM 8 BIN3 keyword length
C PARM 'DSQSNAME'DATA8 8 keyword

C PARM 4 BIN4 value Tength

C PARM '*SYS' DATAA 14 value

C PARM DSQVCH TYPE 4 CHAR

*

* Run the query:
*

C CALL DSQCIR
C PARM DSQCOM comms area
C PARM 16 BIN1 command length
C PARM COM,2 RUN QUERY
* SAMP1Q

* Print the results of the query:
*

C CALL DSQCIR
C PARM DSQCOM comms area
C PARM 25 BIN1 command length
C PARM CoM,3 PRINT REPORT
* (FORM=SAMP1F

* End the query interface session:

*

C CALL DSQCIR
C PARM DSQCOM comms area
C PARM 4 BIN1 command length
C PARM CoM, 4 EXIT
*
C MOVE '1' *INLR end the program

*
ol commands loaded as compile time array
START
RUN QUERY SAMP1Q
PRINT REPORT (FORM=SAMP1F
EXIT

Figure B-5 (Part 2 of 2). Sample RPG Program

B-4 As/400 Query Management/400 Programmer’s Guide

Sample COBOL Program
Figure B-6 is a sample COBOL program to process the WKPAY file.

IDENTIFICATION DIVISION.
PROGRAM-ID. SAMP1.
DATE-COMPILED.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION
SOURCE-COMPUTER. IBM-AS400.
OBJECT-COMPUTER. 1BM-AS400.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT PAY-FILE

ASSIGN TO DISK-WKPAY
FILE STATUS IS PAY-FILE-STATUS.

DATA DIVISION.

FILE SECTION.

FD PAY-FILE LABEL RECORDS STANDARD.
01 PAY-REC.

COPY DDS-PAYR OF WKPAY.

WORKING-STORAGE SECTION.

dkkkdkhkkhhkkhkkkhkkhkkkhhkrhhrhhhhrdhhrdhrhhkhddhrhrhhhrhhrhhhkrhid

* ok o ¥ O ok %k X X F X F O F F X

1)

2)

3)

SAMPLE 1 COBOL PROGRAM USING QUERY INTERFACE

Include member DSQCOMMB contains the communications
area to be passed to the query management interface.

The WKPAY weekly payroll details are read and the hours
worked are multiplied by the hourly rate to calculate
the weeks pay. The file is then updated with the weekly
pay amount.

Once all the records in the WKPAY file are updated,
the interface is started and a query report
printed using the file just updated.

% % ok %k ok ok ok Ok X F F Ok X * X X

dkkhkkkkhkkkkhhhkhkhkhhhkhkkhhkhhkhhhhkhhhhkhhkrhhhhddhrrhdrhkhhkkhdtrrdd

* Include the Communications area

COPY DSQCOMMB OF QLBL-QILBINC.

* Query Interface Commands

77
77
77
77
77

77

START-CMD PIC X(5) VALUE “START".
KEYWORD-NAME PIC X(8) VALUE "DSQSNAME".
NAME-VALUE PIC X(4) VALUE "*SYS".
RUN-QUERY-CMD PIC X(16) VALUE "RUN QUERY SAMP1Q".
PRINT-CMD PIC X(25)

VALUE "PRINT REPORT (FORM=SAMP1F".
EXIT-CMD PIC X(4) VALUE "EXIT".

Figure B-6 (Part 1 of 3). Sample COBOL Program

Appendix B. Query Management Interface Example

B-5

77 ONE PIC 9(8) USAGE IS BINARY VALUE 1.

77 FOUR PIC 9(8) USAGE IS BINARY VALUE 4.
77 FIVE PIC 9(8) USAGE IS BINARY VALUE 5.
77 EIGHT PIC 9(8) USAGE IS BINARY VALUE 8.
77 SIXTEEN PIC 9(8) USAGE IS BINARY VALUE 16.
77 TWENTY-FIVE PIC 9(8) USAGE IS BINARY VALUE 25.

77 PAY-FILE-STATUS PIC XX.

01 FILE-END PIC X VALUE SPACE.
88 END-OF-FILE VALUE "E".
01 FILE-ERROR-INFO.
05 OP-NAME PIC X(7).
05 FILLER PIC X(20) VALUE " ERROR ON FILE WKPAY".
05 FILLER PIC X(18) VALUE " - FILE STATUS IS ".

05 STATUS-VALUE PIC XX.
PROCEDURE DIVISION.
DECLARATIVES.
FILE-ERROR SECTION.
USE AFTER STANDARD ERROR PROCEDURE ON PAY-FILE.
FILE-ERROR-PARA.
MOVE PAY-FILE-STATUS TO STATUS-VALUE.
DISPLAY "FILE PROCESSING ERROR".
DISPLAY FILE-ERROR-INFO.
DISPLAY "PROCESSING ENDED DUE TO FILE ERROR".
STOP RUN.
END DECLARATIVES.

FILE-UPDATE SECTION.
OPEN-FILE.
MOVE "OPEN" TO OP-NAME.
OPEN I-0 PAY-FILE.
PERFORM READ-PAY-FILE THRU UPDATE-PAY-FILE
UNTIL END-OF-FILE.
READ-PAY-FILE.
MOVE "READ" TO OP-NAME.
READ PAY-FILE
AT END SET END-OF-FILE TO TRUE
MOVE "CLOSE" TO OP-NAME
CLOSE PAY-FILE
PERFORM PROCESS-QUERY.
UPDATE-PAY-FILE.
MULTIPLE HOURS BY RATE GIVING WKAMT ROUNDED.
MOVE "UPDATE" TO OP-NAME.
REWRITE PAY-REC.

* Query Interface command and parameter lengths

PROCESS-QUERY SECTION.
START-INTERFACE.
CALL DSQCIB USING DSQCOMM, FIVE, START-CMD,
ONE, EIGHT, KEYWORD-NAME,
FOUR, NAME-VALUE, DSQ-VARIABLE-CHAR.

Figure B-6 (Part 2 of 3). Sample COBOL Program

B-6 AS/400 Query Management/400 Programmer’s Guide

RUN-QUERY.

CALL DSQCIB USING DSQCOMM, SIXTEEN, RUN-QUERY-CMD.
PRINT-REPORT.

CALL DSQCIB USING DSQCOMM, TWENTY-FIVE, PRINT-CMD.
EXIT-INTERFACE.

CALL DSQCIB USING DSQCOMM, FOUR, EXIT-CMD.

STOP RUN.

Figure B-6 (Part 3 of 3). Sample COBOL Program

Query and Form Source

The sample RPG and COBOL programs in Figure B-5 on page B-3 and Figure B-6
on page B-5 refer to query and form source files to produce a report. Figure B-7 is
the query source file (SAMP1Q) referred to in the sample programs.

SELECT NAME, HOURS, RATE, WKAMT FROM BPLIB/WKPAY
ORDER BY NAME

Figure B-7. Sample Query Source
Figure B-8 is the form source (SAMP1F) referred to in the sample programs.

QM4 01 FOLEE ERO1 03 89/11/20 15:51
1110 004 005 1112 007 1115 006 1116 065 1118 063 1113 015

CHAR 2 30 1 Employee_Name
C2 8 2 Hours_Worked

NUMERIC 2 8 3 Hourly_Rate

NUMERIC 2 8 4 Weekiy_Pay

m>X 0 00—
A =
[=
=
m
=
—

Figure B-8. Sample Form Source

Query and Form Printed Output
Figure B-9 is the printed output resulting from running the command PRINT QUERY
SAMP1Q on the query source (SAMP1Q) referred to in the sample programs.

IBM Query Management/400

Query : SAMPI1Q
Library : BPLIB
Text2 SAA Query

SEQNBR *..oteeeleeeiteenn2eeitnn 3ot et Bunn bbb 7o b B
000001 SELECT NAME, HOURS, RATE, WKAMT FROM BPLIB/WKPAY
006002 ORDER BY NAME

* % %« END OF SOURCE * * * % *

Figure B-9. Printed Output of Query Source

Figure B-10 is the printed output resulting from running the command PRINT FORM
SAMP1F on the form source (SAMP1F) referred to in the sample programs.

Appendix B. Query Management Interface Example B-7

IBM Query Management/400

Form : SAMPIF
Library : BPLIB
Text : Form layout for sample 1 program
Column Information
Nbr Heading Usage Type Indent Width Edit
1 Employee_Name CHAR 2 30
2 Hours_Worked NUMERIC 2 8
3 Hourly Rate NUMERIC 2 8
4 Weekly_Pay NUMERIC 2 8
Page Information
Heading text NO
Blank lines before heading: 0
Blank lines after heading e 2
Footing text1:¢t NO
Blank lines before footing: 2
Blank lines after footing : 0
Final Information
Final text NO
New page for final text: NO
Put final summary at line: 1
Blank lines before text: 0
Break Information
Break number 1
Columns with this break number : NONE
Heading text : NO
New page for heading : NO
Blank 1ines before heading: 0
Blank Tines after heading: 0
Repeat column headings: NO
Footing text NO
New page for footing: NO
Blank 1ines before footing: 0
Blank 1ines after footing: 1
Put break summary at 1ine : 1
Break Information
Break number 2
Columns with this break number : NONE
Heading text: NO
New page for heading: NO
Blank 1lines before heading: 0
Blank lines after heading: 0O
Repeat column headings : NO

Figure B-10 (Part 1 of 3). Printed Output of Form Source

B-8 AS/400 Query Management/400 Programmer’s Guide

Seq

SN

IBM Query Management/400

Break Information

Break Information

Break Information

Form. : SAMP1F

Library : BPLIB
Text . .« « v v o Form layout for sample 1 program
Footing text oo .02 NO
New page for footing: NO
Blank 1ines before footing : 0
Blank lines after footing 1
Put break summary at 1ine : 1
Break number e oo 3
Columns with this break number : NONE
Heading text ¢t NO
New page for heading: NO
Blank lines before heading : 0
Blank lines after heading : 0
Repeat column headings: NO
Footing text ¢ NO
New page for footing : NO
Blank lines before footing: 0
Blank lines after footing: 1
Put break summary at line : 1
Break number0 00 0. .t 4
Columns with this break number : NONE
Heading text ¢ oo o v v o2 NO
New page for heading: NO
Blank lines before heading : @
Blank lines after heading: 0O
Repeat column headings: NO
Footing text ¢ o v o ¢ o4 o NO
New page for footing: NO
Blank lines before footing: 0
Blank lines after footing : 1
Put break summary at 1ine : 1
Break number o000 0. : 5
Columns with this break number : NONE
Heading text ¢ . . oo o NO
New page for heading: NO
Blank lines before heading : 0
Blank lines after heading : 0
Repeat column headings3 NO
Footing text e e e e e e : NO
New page for footing2 NO

Figure B-10 (Part 2 of 3). Printed Output of Form Source

Appendix B. Query Management Interface Example

B-9

IBM Query Management/400

Form : SAMPIF
Library : BPLIB
Text : Form layout for sample 1 program
Blank Tines before footing : 0
Blank lines after footing 1
Put break summary at line : 1
Break Information
Break number: 6
Columns with this break number : NONE
Heading text e e e e e e e : NO
New page for heading: NO
Blank 1ines before heading : 0
Blank 1ines after heading: 0
Repeat column headings: NO
Footing text¢ NO
New page for footing NO
Blank 1ines before footing : 0
Biank iines after footing 1
Put break summary at 1ine : 1
Option Information
Detail line spacing: 1
Qutlining for break columns : YES
Default break text YES
Column wrapped lines kept on page : YES
Column heading separators : YES
Break summary separators ¢ YES
Final summary separators : YES

*k%x%x END OF COMPUTER PRINTOQUT ****x*
Figure B-10 (Part 3 of 3). Printed Output of Form Source

Control Language Interface

You can use query management to create simple applications for report generation.
By defining a command, a control language (CL) program, a query, and a form, you
can prompt the user for any amount of information required to generate a mean-
ingful report.

Creating a QMQRY Object

You can define a query (QMQRY object) using an SQL statement. Figure B-11is an
example of how to create the QMQRY object SALARYQ2 using an SQL statement.

IBM Query Management/400

Query : SALARYQ2
Library : EXAMPLE
Text . ¢ TEST QUERY
SEQNBR |...+. .. leceetiiei2iveiteee3eeiiten et 5uii it b....
000001 SELECT DEPT,NAME,ID,JOB,YEARS,SALARY,COMM
000002 FROM TESTDATA/STAFF
000003 WHERE DEPT = &COND1 AND SALARY < &COND2
000004 ORDER BY DEPT,SALARY

* % % % % END OF SOURCE * * *
Figure B-11. Test Query SELECT Statement

B-10 AS/400 Query Management/400 Programmer’s Guide

For more information about creating QMQRY objects, see “Creating a Query Man-

agement Object” on page 3-54.

Creating a QMFORM Object

You can define a form (QMFORM object) to specify the information to be included in
the report generated. Figure B-12 is an example of how to create the QMFORM

object SALARYF2 that contains the following information:

IBM Query Management/400

Form : SALARYF2
Library : EXAMPLE

Text « v ¢ o o o : TEST FORM

Column Information

Nbr Heading Usage Type Indent Width
1 BREAK1 0
2 2
3 2
4 2
5 AVERAGE 2
6 AVERAGE 2
7 2

Page Information

Heading text3 NO

Blank 1ines before heading : 0

Blank lines after heading: 2

Footing text ¢« . ¢ o o .. : NO

Blank lines before footing: 2

Blank lines after footing: 0

Break number00 1

Columns with this break number : 1

Heading text NO

New page for heading e e e e : NO

Blank 1ines before heading: 0O

Blank lines after heading: 0

Repeat column headings: NO

Footing text VYES

New page for footing : NO

Blank 1lines before footing: 0

Blank 1ines after footing : 1

Put break summary at line : 1

Line Align Footing Text
1 RIGHT Dept Avg:

Figure B-12. Test Form Statement

Edit Seq

NOYOTLRA WN -

For more information about creating QMFORM objects, see “Creating a Query Man-

agement Object” on page 3-54.

Appendix B. Query Management Interface Example

B-11

Sampie CL Program

The CL program in Figure B-13 uses the query shown in Figure B-11 and the form
shown in Figure B-12.

SEU SOURCE LISTING
SOURCE FILE EXAMPLE /SOURCE
MEMBER CLPGM
SEQNBR*...+... 1 .40 2 ot 3 aohi o 4 LLki B Lkl 6 L.
100 PGM PARM(&VAR1 &VARZ2 &VAR3 &VAR4)
200 DCL &VAR1 *CHAR LEN(6)
300 DCL &VAR2 *CHAR LEN(6)
400 DCL &VAR3 *CHAR LEN(6)
500 DCL &VAR4 *CHAR LEN(10)
600 STRQMQRY QMQRY (EXAMPLE/SALARYQ2) QMFORM(EXAMPLE/&VAR4) +

700 OUTPUT (&VAR3) +
800 SETVAR((COND1 &VAR1) (COND2 &VAR2))
900 ENDPGM

** %% END OF SOURCE ****

Figure B-13. CL Program Source File
Figure B-14 shows the command to run this example CL program.

SEU SOURCE LISTING

SOURCE FILE EXAMPLE /SOURCE

MEMBER DEPTREP1

SEQNBR*...+... 1 ..+.00 2 soutees 3 soahea 4 Lo+l B LLH. 6 L.
200 CMD PROMPT('Department Report')
300 PARM KWD(VAR1) TYPE(*CHAR) LEN(6) RSTD(*YES) +
301 DFT(10) VALUES(10 20 30 40 50) +
400 PROMPT('Department to report on')
500 PARM KWD(VAR2) TYPE(*CHAR) LEN(6) DFT(100000) +
600 PROMPT('With salary less than')
700 PARM KWD(VAR3) TYPE(*CHAR) LEN(6) RSTD(*YES) +
701 DFT(*) VALUES(* *PRINT) PROMPT('Output +
800 Loc. (*/*PRINT)')
900 PARM KWD(VAR4) TYPE(*CHAR) LEN(10) RSTD(*YES) +
901 DFT(SALARYF2) VALUES(BYDEPT BYDIVISION +
1000 SALARYF2) PROMPT('Report name')

*%**x* END OF SOURCE ** **
Figure B-14. CL Command Source File

B-12 AS/400 Query Management/400 Programmer’s Guide

When you enter the command EXAMPLE /DEPTREP and press F4 to prompt, the following
display appears:

e R
Department Report (DEPTREP)

Type choices, press Enter.

Department to report on 10 10, 20, 30, 40, 50

With salary less than 100000 Character value

Output Loc. (*/*PRINT) *PRINT *, *PRINT

Report name SALARYF2 BYDEPT, BYDIVISION, SALARYF2

Bottom
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys

Press the Enter key to use the default values for this job.

The report shown in Figure B-15 is displayed with the department averages for
salary and years of experience for department 10.

DEPT NAME ID JoB YEARS SALARY COMM
10 DANIELS 240 MGR 5 19,260.25 .00
LU 210 MGR 10 20,010.00 .00
JONES 260 MGR 12 21,234.00 .00
MOLINARE 160 MGR 7 22,959.20 .00
Dept Avg: 9 20,865.86

Figure B-15. CL Program Report Example

Appendix B. Query Management Interface Exampte B-13

B-14 As/400 Query Management/400 Programmer’s Guide

Bibliography

The following manuals contain information about topics
described or referred to in this guide. They are listed
with their full title and base order number. When these
manuals are referred to in text, a shortened version of
the title is used.

e The Database Guide, SC41-9659, provides a
detailed discussion of the AS/400 database organ-
ization, including information on how to create,
describe, and manipulate database files on the
AS/400 system.

Short title: Database Guide

* The Data Management Guide, SC41-9658, provides
information about the fundamental structure and
concepts of data management support of 0S/400
files.

Short title: Data Management Guide

e [anguages: Systems Application Architecture*
AD/Cycle* RPG/400* User’s Guide, SC09-1348, pro-
vides information needed to write, test, and main-
tain RPG/400 programs on the AS/400 system.

Short title: RPG/400* User’s Guide

e The Programming: Control Language Reference,
SC41-0030, provides information about using AS/400
control language (CL) and its commands when
working with licensed programs.

Short title: CL Reference

© Copyright IBM Corp. 1991

Programming: Query Management/400 Reference,
SC41-8193, contains information about how to write
applications that use Query Management/400.

Short title: Query Management/400 Reference

Query/400 User’s Guide, SC41-9614, provides infor-
mation on working with Query/400 and how to use
Query/400 to get data from any database file.

Short title: Query/400 User’s Guide

SAA CPI Database Reference, SC26-4348, provides
information pertaining to SAA CPI database.

SAA CPI Query Reference, SC26-4349, provides
information pertaining to SAA Query.

Security Concepts and Planning, SC41-8083, pro-
vides information about system security concepts,
planning for security, and setting up security on the
AS/400 system.

Short title: Security Concepts and Planning

Systems Application Architecture: An Overview,
GC26-4341, provides general information on SAA
functions.

Systems Application Architecture* Structured Query
Language/400 Programmer’s Guide, SC41-9609,
provides information on how to design, write, run,
and test SQL/400 statements. It also describes
Interactive Structured Query Language (ISQL).

Short title: SQL/400* Programmer’s Guide

H-1

H-2 As/400 Query Management/400 Programmer’s Guide

Index

A

Analyze Query (ANZQRY) command 2-20
appending tables 2-14

application data (*) record 3-43

authority 1-7

authorization for objects 1-7

break columns
displaying 3-16
outlining 3-23

break fields 3-11

break level definition 3-11

breaks
alignment 3-13
blank lines 3-12
column heading 3-11
default text 3-23
default values 3-11
footing text 3-13
heading lines 3-12
indent field 3-17
summary 3-12
using 3-15

Cc

C language 5-1
callable interface (Cl)
macroinstructions 3-1
modules 3-2
return variables 3-2
use 6-1
character edit codes 3-17
character variable values 3-3
Cl
See callabie interface (Cl)
CL
See control language (CL)
COBOL language
example 5-4
program example B-5
coliection
definition 1-1
use 1-2
column
control breaks 3-16
defaults 3-14
definition 1-1, 3-13
edit codes 3-17
heading 3-14
heading separators 3-23
sequencing 3-19

© Copyright IBM Corp. 1991

column (continued)
tables 3-32
width 3-17
wrapping 3-23
column fields 3-13
commands
control language (CL)
ANZQRY 2-20
CRTQMFORM 2-21
CRTQMQRY 2-21
DLTQMFORM 2-21
DLTQMQRY 2-21
RTVQMFORM 2-21
RTVQMQRY 2-21
STRQMPRC 2-21
STRQMQRY 2-21
WRKQMFORM 2-22
WRKQMQRY 2-22
generic 3-53
procedure 2-19
query management
ERASE 2-1
EXIT 2-2,6-13
EXPORT 2-2
GET 2-4,4-7
IMPORT 2-5
PRINT 2-7
RUN 2-11
SAVE DATA AS 2-12
SET 2-14,4-7
START 2-16, 3-4, 6-1
comments 3-8
Common Programming Interface (CPI)
handling 6-1
query management 1-1
control language (CL)
commands 2-20
example program B-12
interface B-10
query management 3-53
conversion 8-1
considerations 8-5
specifying 8-2
CPi
See Common Programming Interface (CPI)
Create Query Management Form (CRTQMFORM)
command 2-21
Create Query Management Query (CRTQMQRY)
command 2-21

D

DATA set xiii, 4-1

X-1

DBCS
See double-byte character set (DBCS)
default
break text 3-23
breaks 3-11
column fields 3-14
final text fields 3-21
form 3-9
option fields 3-22
page fields 3-24
Delete Query Management Form (DLTQMFORM)
command 2-21
Delete Query Management Query (DLTQMQRY)
command 2-21
double-byte character set (DBCS)
importing data 3-52
in edit codes 3-17
using in query management 3-52
DSQ variables 3-5
DSQCOMMB example 5-5
DSQCOMMC example 5-1
DSQCOMMR example 5-10
DSQOAUTH 1-7

E

edit codes
character 3-17
numeric 3-18
using 7-11
encoded format
changing 3-47
description 3-31
importing 3-31
names 3-49
records 3-32
end-of-object (E) record 3-42
environment 1-1
ERASE command
description 2-1
example 2-2
error handling 3-28
error messages A-1
examples
C language 5-1
CL program B-12
COBOL language 5-4
COBOL program B-5
command procedure 2-20
DSQCOMMB 5-5
DSQCOMMC 5-1
DSQCOMMR 5-10
ERASE command 2-2
EXIT command 2-2
Exit program 6-13
EXPORT command 2-4
GET command 2-5
IMPORT command 2-7

X-2 ASs/400 Query Management/400 Programmer’s Guide

examples (continued)
interface B-1
PRINT command 2-10
QMFORM B-11
QMQRY B-10
RPG language 5-7
RPG program B-3
RUN command 2-12
RUNP program 6-11
RUNQ program 6-9
SAVE DATA AS command
SET command 2-15
SETA program 6-5
SETC program 6-3
SETN program 6-7
START command 2-19
START program 6-2
EXIT command
description 2-2
example 2-2
program example 6-13
export
files 3-29
form 3-32, 4-4
procedure 4-4
query 4-4
EXPORT command
description 2-2
example 2-4
exported objects 3-29

F

field definition 1-1
fields
break 3-11
column 3-13
final text 3-21
options 3-22
page 3-24
files
exporting 3-29
importing 3-29
source physical 3-27
final text
defaults 3-21
specifying 3-22
final text fields 3-21
footing definition 3-24
form variables 2-12
formatting
print object 2-11
print report 2-11
terminology 3-9
forms
default 3-9
importing 3-31
objects 3-10

2-14

G

GET command
description 2-4
example 2-5
GET GLOBAL command 4-7
getting variables 4-7

H

header (H) record 3-33
heading definition 3-24
high-level languages 5-1

import
DBCS data 3-52
files 3-29
form 3-31, 4-4
procedure 4-4
query 4-4

IMPORT command
description 2-5
example 2-7

indent breaks 3-17

instance
creating 4-1
DATA set 4-1

processing 4-1
running 4-2
integer variable values 3-3
interface example B-1
IsQL 7-10

keyword
DSQOAUTH 1-7
DSQSCMD 2-19

L

languages
C 541
COBOL 5-4
RPG 5-7
library definition 1-1
line continuation 3-8
line spacing definition 3-22

messages A-1

names
enclosed in quotation marks 1-3, 1-5
qualified 1-3

names (continued)
variable 2-1, 2-4, 3-3
variables 1-6
naming
AS/400 objects 1-5
conventions 1-3
other queries 1-6
query objects 1-3
SAA 1-4
system 1-3
variable names 1-6
numeric edit codes 3-18

o)

objects
exported 3-29
information 3-54
printing 7-4
procedures 3-27
QRYDFN 8-1
query management 3-53
option
defaults 3-22
options fields 3-22
override
considerations 7-1
printer files 2-10
specifying 7-11

P

page
break 3-11
defaults 3-24
footing 3-12
footing text 3-26
heading 3-12
heading text 3-25
page fields 3-24
physical files 1-5
PRINT command
description 2-7
example 2-10
printer file 2-10
printing
objects 7-4
reports 2-11
procedures
areas in quotation marks 3-28
creating 3-27
definition 3-26
example 3-28
exporting 4-4
importing 4-4
interaction 3-27
objects 3-27
running 4-5, 6-11

Index

X-3

programs
coBOL B-5
control language B-10
query management 3-1
RPG B-3

prompting variables 3-8

Q

QMFORM
creating 3-54, 4-3
description 3-32, 3-53
example B-11
QMQRY
creating 3-54
description 3-53
example B-10
QRYDFN
conversion 8-1
objects 8-1
report differences 8-9
using 8-1
queries
creating 3-6
running 4-2
query capability 3-6
query management
CL commands 3-53
concepts 1-1
considerations 7-1
enhancements 1-1
objects 3-53
overview 1-1
programs 3-1
tables 4-6
variables 3-4
query names 1-6
quotation marks
innames 1-3
in variables 2-15

R

record definition 1-1
records in encoded format

related printed information H-1

replacing tables 2-14

report
break level 3-11
column 3-13
creating 4-3
final text 3-21
footing 3-24
heading 3-24

repeating 3-11

options 3-22
printing 2-11
producing B-1

X-4 As/a00 Query Management/400 Programmer’s Guide

report form
definition 3-8
terminology 3-9
using 3-8
Retrieve Query Management Form (RTVQMFORM)
command 2-21
Retrieve Query Management Query (RTVQMQRY)
command 2-21
return codes A-1
return variables 3-2
row definition 1-1
RPG language
example 5-7
program example B-3
rules
creating queries 3-6
naming 1-3
procedure creation 3-27
RUN command
description 2-11
example 2-12
program example 6-10, 6-11

S
SAA
See Systems Application Architecture (SAA)
SAVE DATA AS command
description 2-12
example 2-14
security 1-6
SET command
description 2-14
example 2-15
program example 6-4, 6-5, 6-7
SET GLOBAL command 4-7
setting variables 4-7
source physical files 3-29
rules 3-29
sQL 7-10
START command
description 2-16
example 2-19, 6-1
program example 6-2
variables 3-4
Start Query Management Procedure (STRQMPRC)
command 2-21
Start Query Management Query (STRQMQRY)
command 2-21
subprogram use 6-1
substituting variables 3-7, 4-3
Systems Application Architecture (SAA)
callable interface modules 3-2
environment 1-1
macroinstructions 3-1
naming 1-4
overview 1-1
terminology 1-2

T

table description (T) record 3-37

table row (R) record 3-40
tables
appending 2-14
query management 4-6
replacing 2-14
terms, formatting 3-9
text
break 3-23
final 3-21
tips and techniques 7-4

\'J

value (V) record 3-36

variables
DSQ 2-19, 3-4, 3-5
DSQCIB 5-4
DSQCIR 5-8
DSQCONFIRM 2-20
DSQOAUTH 2-19
DSQSCNVT 2-20
DSQSMODE 2-19
DSQSNAME 2-20
DSQSRUN 2-19
filename 2-3
form 2-12
getting 4-7
GLOBAL 2-4,3-2
global substitution 4-3
LENGTH 2-8
name 2-1,2-4
names 3-3
naming 1-6
page heading 3-25
prompting 3-8

query management-defined 3-4

referringto 3-3
return 3-2
setting 4-7
substituting 3-7
values
character 3-3
integer 3-3
WIDTH 2-8
view definition 1-1

w

width 3-17

Work with Query Management Forms (WRKQMFORM)

command 2-22

Work with Query Management Queries (WRKQMQRY)

command 2-22
wrapping lines 3-23

Special Characters

*record 3-43

*ALL authority 1-7
*CHANGE authority 1-7
*EXCLUDE authority 1-7
*LIBCRTAUT authority 1-7
*USE authority 1-7

Index

X-5

Readers’ Comments

Application System/400™
Programming:

Query Management/400
Programmer’s Guide
Version 2

Pubiication No. $SC41-8192-00

Use this form to tell us what you think about this manual. If you have found errors in it, or if you want to
express your opinion about it (such as organization, subject matter, appearance) or make suggestions for
improvement, this is the form to use.

To request additional publications, or to ask questions or make comments about the functions of IBM pro-
ducts or systems, you should talk to your IBM representative or to your IBM authorized remarketer. This
form is provided for comments about the information in this manual and the way it is presented.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in
any way it believes appropriate without incurring any obligation to you.

Be sure to print your name and address below if you would like a reply.

Name Address

Company or Organization

Phone No.

Readers’ Comments
SC41-8192-00

Fold and Tape Please do not staple

Fold and Tape

BUSINESS REPLY MAIL

FIRST CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

ATIN T 245
BM CORPORATION
3605 HWY 52 N

ROCHESTER MN 55901-7899

NO POSTAGE
NECESSARY

IF MAILED IN THE
UNITED STATES

Fold and Tape Please do not staple

SC41-8192-00

Fold and Tape

Cuto
Along

Cut ol
Along

|)}
1
]
T}
<.|||
olin

Program Number: 5738-SS1

Printed in Denmark by Interprint

SC41-8192-00

U

	03903389 =====================.tif
	03903390.tif
	03903391.tif
	03903392.tif
	03903393.tif
	03903394.tif
	03903395.tif
	03903396.tif
	03903397.tif
	03903398.tif
	03903399.tif
	03903400.tif
	03903401.tif
	03903402.tif
	03903403.tif
	03903404.tif
	03903405.tif
	03903406.tif
	03903407.tif
	03903408.tif
	03903409.tif
	03903410.tif
	03903411.tif
	03903412.tif
	03903413.tif
	03903414.tif
	03903415.tif
	03903416.tif
	03903417.tif
	03903418.tif
	03903419.tif
	03903420.tif
	03903421.tif
	03903422.tif
	03903423.tif
	03903424.tif
	03903425.tif
	03903426.tif
	03903427.tif
	03903428.tif
	03903429.tif
	03903430.tif
	03903431.tif
	03903432.tif
	03903433.tif
	03903434.tif
	03903435.tif
	03903436.tif
	03903437.tif
	03903438.tif
	03903439.tif
	03903440.tif
	03903441.tif
	03903442.tif
	03903443.tif
	03903444.tif
	03903445.tif
	03903446.tif
	03903447.tif
	03903448.tif
	03903449.tif
	03903450.tif
	03903451.tif
	03903452.tif
	03903453.tif
	03903454.tif
	03903455.tif
	03903456.tif
	03903457.tif
	03903458.tif
	03903459.tif
	03903460.tif
	03903461.tif
	03903462.tif
	03903463.tif
	03903464.tif
	03903465.tif
	03903466.tif
	03903467.tif
	03903468.tif
	03903469.tif
	03903470.tif
	03903471.tif
	03903472.tif
	03903473.tif
	03903474.tif
	03903475.tif
	03903476.tif
	03903477.tif
	03903478.tif
	03903479.tif
	03903480.tif
	03903481.tif
	03903482.tif
	03903483.tif
	03903484.tif
	03903485.tif
	03903486.tif
	03903487.tif
	03903488.tif
	03903489.tif
	03903490.tif
	03903491.tif
	03903492.tif
	03903493.tif
	03903494.tif
	03903495.tif
	03903496.tif
	03903497.tif
	03903498.tif
	03903499.tif
	03903500.tif
	03903501.tif
	03903502.tif
	03903503.tif
	03903504.tif
	03903505.tif
	03903506.tif
	03903507.tif
	03903508.tif
	03903509.tif
	03903510.tif
	03903511.tif
	03903512.tif
	03903513.tif
	03903514.tif
	03903515.tif
	03903516.tif
	03903517.tif
	03903518.tif
	03903519.tif
	03903520.tif
	03903521.tif
	03903522.tif
	03903523.tif
	03903524.tif
	03903525.tif
	03903526.tif
	03903527.tif
	03903528.tif
	03903529.tif
	03903530.tif
	03903531.tif
	03903532.tif
	03903533.tif
	03903534.tif
	03903535.tif
	03903536.tif
	03903537.tif
	03903538.tif
	03903539.tif
	03903540.tif
	03903541.tif
	03903542.tif
	03903543.tif
	03903544.tif
	03903545.tif
	03903546.tif
	03903547.tif
	03903548.tif
	03903549.tif
	03903550.tif
	03903551.tif
	03903552.tif
	03903553.tif
	03903554.tif
	03903555.tif
	03903556.tif
	03903557.tif
	03903558.tif
	03903559.tif
	03903560.tif
	03903561.tif
	03903562.tif
	03903563.tif
	03903564.tif
	03903565.tif
	03903566.tif
	03903567.tif
	03903568.tif
	03903569.tif
	03903570.tif
	03903571.tif
	03903572.tif
	03903573.tif
	03903574.tif
	03903575.tif
	03903576.tif
	03903577.tif
	03903578.tif
	03903579.tif
	03903580.tif
	03903581.tif
	03903582.tif
	03903583.tif
	03903584.tif
	03903585.tif
	03903586.tif
	03903587.tif
	03903588.tif
	03903589.tif
	03903590.tif
	03903591.tif
	03903592.tif
	03903593.tif
	03903594.tif
	03903595.tif
	03903596.tif
	03903597.tif
	03903598.tif
	03903599.tif
	03903600.tif

